Advertisement

Modeling and Specification of Nondeterministic Fuzzy Discrete-Event Systems

  • Yongzhi CaoEmail author
  • Yoshinori Ezawa
  • Guoqing Chen
  • Haiyu Pan
Chapter
  • 11 Downloads
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 276)

Abstract

Most of the published research on fuzzy discrete-event systems (FDESs) has focused on systems that are modeled as deterministic fuzzy automata. In fact, nondeterminism in FDESs occurs in many practical situations and can be used to represent underspecification or incomplete information. In this paper, we pay attention to the modeling and specification of nondeterministic FDESs (NFDESs). We model NFDESs by a new kind of fuzzy automata. To describe adequately the behavior of NFDESs, we introduce the concept of bisimulation, which is a finer behavioral measure than fuzzy language equivalence. Further, we propose the notion of nondeterministic fuzzy specifications (NFSs) to specify the behavior of NFDESs and introduce a satisfaction relation between NFDESs and NFSs. If such a relation exists, then at least one knows that there is no unwanted behavior in the system.

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 61672023, 61772035, and 61751210, Guangxi Natural Science Foundation of China under Grant 2018GXNSFAA281326, and Guangxi Key Laboratory of Trusted Software under Grant kx201911.

References

  1. 1.
    Benmessahel, B., Touahria, M., Nouioua, F., Gaber, J., Lorenz, P.: Decentralized prognosis of fuzzy discrete-event systems. Iran. J. Fuzzy Syst. 16(3), 127–143 (2019)Google Scholar
  2. 2.
    Cao, Y., Chen, G., Kerre, E.: Bisimulations for fuzzy-transition systems. IEEE Trans. Fuzzy Syst. 19(3), 540–552 (2011)CrossRefGoogle Scholar
  3. 3.
    Cao, Y., Ezawa, Y.: Nondeterministic fuzzy automata. Inform. Sci. 191, 86–97 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cao, Y., Sun, S.X., Wang, H., Chen, G.: A behavioral distance for fuzzy transition systems. IEEE Trans. Fuzzy Syst. 21(4), 735–747 (2013)CrossRefGoogle Scholar
  5. 5.
    Cao, Y., Ying, M.: Supervisory control of fuzzy discrete event systems. IEEE Trans. Syst. Man Cybern. B Cybern. 35(2), 366–371 (2005)Google Scholar
  6. 6.
    Cao, Y., Ying, M.: Observability and decentralized control of fuzzy discrete-event systems. IEEE Trans. Fuzzy Syst. 14(2), 202–216 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cao, Y., Ying, M., Chen, G.: State-based control of fuzzy discrete-event systems. IEEE Trans. Syst. Man Cybern. B Cybern. 37(2), 410–424 (2007)Google Scholar
  8. 8.
    Chen, T., Han, T., Cao, Y.: Polynomial-time algorithms for computing distances of fuzzy transition systems. Theor. Comput. Sci. 727, 24–36 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ćirić, M., Stamenković, A., Ignjatović, J., Petković, T.: Fuzzy relation equations and reduction of fuzzy automata. J. Comput. Syst. Sci. 76(7), 609–633 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Deng, W., Qiu, D.: State-based decentralized diagnosis of bi-fuzzy discrete event systems. IEEE Trans. Fuzzy Syst. 25(4), 3854–867 (2017)Google Scholar
  11. 11.
    Du, X., Ying, H., Lin, F.: Theory of extended fuzzy discrete-event systems for handling ranges of knowledge uncertainties and subjectivity. IEEE Trans. Fuzzy Syst. 17(2), 316–328 (2009)CrossRefGoogle Scholar
  12. 12.
    Garg, V.K., Kumar, R., Marcus, S.I.: A probabilistic language formalism for stochastic discrete-event systems. IEEE Trans. Automat. Contr. 44(2), 280–293 (1999)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Heymann, M., Lin, F.: Discrete-event control of nondeterministic systems. IEEE Trans. Automat. Contr. 43(1), 3–17 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs, NJ (1985)zbMATHGoogle Scholar
  15. 15.
    Huq, R., Mann, G.K.I., Gosine, R.G.: Behavior-modulation technique in mobile robotics using fuzzy discrete event system. IEEE Trans. Robot. 22(5), 903–916 (2006)CrossRefGoogle Scholar
  16. 16.
    Jiang, S., Kumar, R.: Supervisory control of nondeterministic discrete-event systems with driven events via masked prioritized synchronization. IEEE Trans. Automat. Contr. 47(9), 1438–1449 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kumar, R., Garg, V.K.: Control of stochastic discrete event systems modeled by probabilistic languages. IEEE Trans. Automat. Contr. 46(4), 593–606 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inform. Comput. 94, 1–28 (1991)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lawford, M., Wonham, W.M.: Supervisory control of probabilistic discrete event systems. In: Proceedings of 36th Midwest Symposium on Circuits and Systems, vol. 1, pp. 327–331. IEEE, Detroit, MI (1993)Google Scholar
  20. 20.
    Li, Y.H., Lin, F., Lin, Z.H.: Supervisory control of probabilistic discrete-event systems with recovery. IEEE Trans. Automat. Contr. 44(10), 1971–1975 (1999)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lin, F., Ying, H.: Modeling and control of fuzzy discrete event systems. IEEE Trans. Syst. Man Cybern. B Cybern. 32(4), 408–415 (2002)Google Scholar
  22. 22.
    Lin, F., Ying, H.: State-feedback control of fuzzy discrete-event systems. IEEE Trans. Syst. Man Cybern. B Cybern. 40(3), 951–956 (2010)Google Scholar
  23. 23.
    Lin, F., Ying, H., MacArthur, R.D., Cohn, J.A., Barth-Jones, D., Crane, L.R.: Decision making in fuzzy discrete event systems. Inform. Sci. 177(18), 3749–3763 (2007)CrossRefGoogle Scholar
  24. 24.
    Liu, J.P., Li, Y.M.: The relationship of controllability between classical and fuzzy discrete-event systems. Inform. Sci. 178(21), 4142–4151 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Liu, R., Wang, Y.X., Zhang, L.: An FDES-based shared control method for asynchronous brain-actuated robot. IEEE Trans. Cybern. 46(6), 1452–1462 (2016)CrossRefGoogle Scholar
  26. 26.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs, New Jersey (1989)zbMATHGoogle Scholar
  27. 27.
    Pantelic, V., Postma, S.M., Lawford, M.: Probabilistic supervisory control of probabilistic discrete event systems. IEEE Trans. Automat. Contr. 54(8), 2013–2018 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Park, D.: Concurrency and automata on infinite sequences. In: Proceedings of 5th GI-Conference Theoretical Computer Science. Lecture Notes in Computer Science, vol. 104, pp. 167–183. Springer (1981)Google Scholar
  29. 29.
    Petković, T.: Congruences and homomorphisms of fuzzy automata. Fuzzy Sets Syst. 157, 444–458 (2006)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Qiu, D.W.: Supervisory control of fuzzy discrete event systems: a formal approach. IEEE Trans. Syst. Man Cybern. B Cybern. 35(1), 72–88 (2005)Google Scholar
  31. 31.
    Qiu, D.W., Liu, F.C.: Fuzzy discrete-event systems under fuzzy observability and a test algorithm. IEEE Trans. Fuzzy Syst. 17(3), 578–589 (2009)CrossRefGoogle Scholar
  32. 32.
    Sun, D.D., Li, Y.M., Yang, W.W.: Bisimulation relations for fuzzy finite automata. Fuzzy Syst. Math. 23, 92–100 (2009). (in Chinese)Google Scholar
  33. 33.
    de Vink, E.P., Rutten, J.J.M.M.: Bisimulation for probabilistic transition systems: a coalgebraic approach. Theor. Comput. Sci. 221, 271–293 (1999)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Wonham, W.M.: Supervisory control of discrete-event systems. University of Toronto, Toronto, ON, Canada, Technical Report (2005). http://www.control.utoronto.ca/DES/
  35. 35.
    Ying, H., Lin, F., MacArthur, R.D., Cohn, J.A., Barth-Jones, D.C., Ye, H., Crane, L.R.: A fuzzy discrete event system approach to determining optimal HIV/AIDS treatment regimens. IEEE Trans. Inform. Tech. Biomed. 10(4), 663–676 (2006)CrossRefGoogle Scholar
  36. 36.
    Ying, H., Lin, F., MacArthur, R.D., Cohn, J.A., Barth-Jones, D.C., Ye, H., and L. R. Crane, “A self-learning fuzzy discrete event system for HIV/AIDS treatment regimen selection. IEEE Trans. Syst. Man Cybern. B Cybern. 37(4), 966–979 (2007)Google Scholar
  37. 37.
    Zhou, C., Kumar, R., Jiang, S.: Control of nondeterministic discrete-event systems for bisimulation equivalence. IEEE Trans. Automat. Contr. 51(5), 754–765 (2006)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zhou, C., Kumar, R.: Control of nondeterministic discrete event systems for simulation equivalence. IEEE Trans. Automat. Sci. Eng. 4(3), 340–349 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yongzhi Cao
    • 1
    Email author
  • Yoshinori Ezawa
    • 2
  • Guoqing Chen
    • 3
  • Haiyu Pan
    • 4
  1. 1.Key Laboratory of High Confidence Software Technologies (MOE), Department of Computer Science and TechnologyPeking UniversityBeijingChina
  2. 2.Faculty of InformaticsKansai UniversityOsakaJapan
  3. 3.School of Economics and ManagementTsinghua UniversityBeijingChina
  4. 4.Guangxi Key Laboratory of Trusted SoftwareGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations