Allelopathy pp 53-59 | Cite as

Allelopathic Control of Native Weeds

  • Waseem Mushtaq
  • Mohammad Badruzzaman Siddiqui
  • Khalid Rehman Hakeem
Part of the SpringerBriefs in Agriculture book series (BRIEFSAGRO)


Weeds are undesired plants that are of no economical use and are hard to manage by farmers. Weeds affect the growth and development of crops and therefore limit their productivity (Ani, Onu, Okoro, & Uguru, 2018). In the agricultural system, weeds compete with crop plants resulting in the loss of their yield (Gaba, Reboud, & Fried, 2016). They limit the accessibility of light, moisture, space to crops and deteriorate their quality (Guglielmini, Verdú, & Satorre, 2017). In view of these features, it has become necessary to check its growth. However, with the beginning of agriculture, the most prominent weed control approaches include an application of herbicides and hand/motorized weeding (Jabran, Mahajan, Sardana, & Chauhan, 2015; Young, Meyer, & Woldt, 2014). These approaches have a remarkable contribution to the improvement of crop production; but various hurdles are associated with them, as well. However, wide utilization of herbicides to check the growth of weeds has led to severe ecological and environmental problems like herbicide resistance, a shift in weed flora, and environmental pollution and health hazards due to their toxic residues in soil, water, and food chain. The harmful effect of commercial herbicides makes it suitable to explore various other weed management alternatives (Nirmal Kumar, Amb, & Bora, 2010) and allelopathy seems to be one of the options (Rawat, Maikhuri, Bahuguna, Jha, & Phondani, 2017). Allelopathy is an eco-friendly weed management tool, which is practiced to combat the impacts of environmental pollution. Allelopathy is a chemical method that allows the plant to compete for a narrow range of resources (Gioria & Osborne, 2014).


  1. Alcantara, C., Pujadas, A., & Saavedra, M. (2011). Management of Sinapis alba subsp. mairei winter cover crop residues for summer weed control in southern Spain. Crop Protection, 30, 1239–1244.CrossRefGoogle Scholar
  2. Amosse, C., Jeuffroy, M. H., Celette, F., & David, C. (2013). Relay-intercropped forage legumes help to control weeds in organic grain production. European Journal of Agronomy, 49, 158–167.CrossRefGoogle Scholar
  3. Ani, O., Onu, O., Okoro, G., & Uguru, M. (2018). Overview of biological methods of weed control. Biological Approaches for Controlling Weeds, 5, 5.Google Scholar
  4. Arora, K. O., Batish, D. A., Kohli, R., & Singh, H. (2017). Allelopathic impact of essential oil of Tagetes minuta on common agricultural and wasteland weeds. Innovare Journal of Agricultural Science, 5, 1–4.Google Scholar
  5. Asaduzzaman, M., An, M., Pratley, J. E., Luckett, D. J., & Lemerle, D. (2014). Canola (Brassica napus) germplasm shows variable allelopathic effects against annual ryegrass (Lolium rigidum). Plant and Soil, 380(1–2), 47–56.CrossRefGoogle Scholar
  6. Bajgai, Y., Kristiansen, P., Hulugalle, N., & McHenry, M. (2015). Comparison of organic and conventional managements on yields, nutrients and weeds in a corn–cabbage rotation. Renewable Agricultural and Food Systems, 30(2), 132–142.CrossRefGoogle Scholar
  7. Bernstein, E. R., Stoltenberg, D. E., Posner, J. L., & Hedtcke, J. L. (2014). Weed community dynamics and suppression in tilled and no-tillage transitional organic winter rye–soybean systems. Weed science, 62(1), 125–137.CrossRefGoogle Scholar
  8. Bhadoria, P. B. (2011). Allelopathy: A natural way towards weed management. American Journal of Experimental Agriculture, 1(1), 7.CrossRefGoogle Scholar
  9. Bhowmik, P. C. (2003). Challenges and opportunities in implementing allelopathy for natural weed management. Crop protection, 22(4), 661–671.CrossRefGoogle Scholar
  10. Dayan, F. E., Owen, D. K., & Duke, S. O. (2012). Rationale for a natural products approach to herbicide discovery. Pest Management Science, 68, 519–528.PubMedCrossRefGoogle Scholar
  11. Dhima, K. V., Vasilakoglou, I. B., Eleftherohorinos, I. G., & Lithourgidis, A. S. (2006). Allelopathic potential of winter cereals and their cover crop mulch effect on grass weed suppression and corn development. Crop Science, 46, 345–352.CrossRefGoogle Scholar
  12. El-Rokiek Kowthar, G., Ahmed, S. A., Messiha, N. K., Mohamed, S. A., & El-Masry, R. R. (2017). Controlling the grassy weed Avena fatua associating wheat plants with the seed powder of two brassicaceae plants Brassica rapa and Sinapis alba. Middle East Journal, 6(4), 1014–1020.Google Scholar
  13. Farooq, M., Jabran, K., Cheema, Z. A., Wahid, A., & Siddique, K. H. M. (2011). The role of allelopathy in agricultural pest management. Pest Management Science, 67, 493–506.PubMedCrossRefGoogle Scholar
  14. Fernández-Aparicio, M., Emeran, A. A., & Rubiales, D. (2010). Inter-cropping with berseem clover (Trifolium alexandrinum) reduces infection by Orobanche crenata in legumes. Crop Protection, 29(8), 867–871.CrossRefGoogle Scholar
  15. Ferreira, M. I., & Reinhardt, C. F. (2016). Allelopathic weed suppression in agroecosystems: A review of theories and practices. African Journal of Agricultural Research, 11(6), 450–459.CrossRefGoogle Scholar
  16. Gaba, S., Reboud, X., & Fried, G. (2016). Agroecology and conservation of weed diversity in agricultural lands. Botany Letters, 163(4), 351–354.CrossRefGoogle Scholar
  17. Gioria, M., & Osborne, B. A. (2014). Resource competition in plant invasions: Emerging patterns and research needs. Frontiers in Plant Science, 5, 501.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Guglielmini, A. C., Verdú, A. M., & Satorre, E. H. (2017). Competitive ability of five common weed species in competition with soybean. International journal of pest management, 63(1), 30–36.CrossRefGoogle Scholar
  19. Hussain, F., Ilahi, I., Malik, S. A., Dasti, A. A., & Ahmad, B. (2011). Allelopathic effects of rain leachates and root exudates of Cenchrus ciliaris L. and Bothriochloa pertusa (L.) A. Camus. Pakistan Journal of Botany, 43(1), 341–350.Google Scholar
  20. Jabran, K. (2017). Manipulation of allelopathic crops for weed control (1st ed.). Cham, Switzerland: Springer.CrossRefGoogle Scholar
  21. Jabran, K., & Chauhan, B. S. (2018). Non-chemical weed control (1st ed.). New York, NY: Elsevier.Google Scholar
  22. Jabran, K., & Farooq, M. (2013). Implications of potential allelopathic crops in agricultural systems. In Allelopathy (pp. 349–385). Berlin, Germany: Springer.CrossRefGoogle Scholar
  23. Jabran, K., Mahajan, G., Sardana, V., & Chauhan, B. S. (2015). Allelopathy for weed control in agricultural systems. Crop Protection, 72, 57–65.CrossRefGoogle Scholar
  24. Kapoor, D., Tiwari, A., Sehgal, A., Landi, M., Brestic, M., & Sharma, A. (2019). Exploiting the allelopathic potential of aqueous leaf extracts of Artemisia absinthium and Psidium guajava against Parthenium hysterophorus, a widespread weed in India. Plants, 8(12), 552.CrossRefGoogle Scholar
  25. Khan, M. A., Ali, K., Hussain, Z., & Afridi, R. A. (2012). Impact of maize-legume intercropping on weeds and maize crop. Pakistan Journal of Weed Science Research, 18(1), 127–136.Google Scholar
  26. Khan, M. B., Khan, M., Hussain, M., Farooq, M., Jabran, K., & Lee, D. J. (2012). Bio-economic assessment of different wheat-canola intercropping systems. International Journal of Agriculture and Biology, 14, 769–774.Google Scholar
  27. Khanh, T. D., Son, D. B., Phuong, V. T., Hoa, L. T., Linh, L. H., Yen, N. V., & Trung, K. H. (2017). Assessment of weed-suppressing potential among rice (Oryza sativa L.) landraces against the growth of Barnyardgrass (Echinochloa crus-galli P. Beauv) in field condition. Academy of Agriculture Journal, 2(08), 47–51.Google Scholar
  28. Mirsky, S. B., Ryan, M. R., Teasdale, J. R., Curran, W. S., Reberg-Horton, C. S., Spargo, J. T., … Moyer, J. W. (2013). Overcoming weed management challenges in cover crop–based organic rotational no-till soybean production in the eastern United States. Weed Technology, 27(1), 193–203.CrossRefGoogle Scholar
  29. Nawaz, A., Farooq, M., Cheema, S. A., & Cheema, Z. A. (2014). Role of allelopathy in weed management. In Recent advances in weed management (pp. 39–61). New York, NY: Springer.Google Scholar
  30. Nirmal Kumar, J. I., Amb, M. K., & Bora, A. (2010). Chronic response of Anabaena fertilissima on growth, metabolites and enzymatic activities by chlorophenoxy herbicide. Pesticide Biochemistry and Physiology, 98(2), 168–174.CrossRefGoogle Scholar
  31. Ravlić, M., Baličević, R., Nikolić, M., & Sarajlić, A. (2016). Assessment of allelopathic potential of fennel, rue and sage on weed species hoary cress (Lepidium draba). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(1), 48–52.CrossRefGoogle Scholar
  32. Ravlić, M., Baličević, R., Visković, M., & Smolčić, I. (2017). Response of weed species on allelopathic potential of Aloe vera (L.) Burm. f. Herbologia, 16(2), 49–55.Google Scholar
  33. Rawat, L. S., Maikhuri, R. K., Bahuguna, Y. M., Jha, N. K., & Phondani, P. C. (2017). Sunflower allelopathy for weed control in agriculture systems. Journal of Crop Science and Biotechnology, 20(1), 45–46.CrossRefGoogle Scholar
  34. Rodino, S., Buțu, M., & Buțu, A. (2016). Comparative study on allelopathic potential of Petroselinum crispum (MILL.) FUSS. Analele Stiintifice ale Universitatii “Al. I. Cuza” din Iasi, 62(2), 35.Google Scholar
  35. Sturm, D. J., Peteinatos, G., & Gerhards, R. (2018). Contribution of allelopathic effects to the overall weed suppression by different cover crops. Weed Research, 58(5), 331–337.CrossRefGoogle Scholar
  36. Tursun, N., Işık, D., Demir, Z., & Jabran, K. (2018). Use of living, mowed, and soil-incorporated cover crops for weed control in apricot orchards. Agronomy, 8(8), 150.CrossRefGoogle Scholar
  37. Vyvyan, J. R. (2002). Allelochemicals as leads to herbicides and agrochemicals. Tetrahedron, 58, 1631–1646.CrossRefGoogle Scholar
  38. Wang, C. M., Li, T. C., Jhan, Y. L., Weng, J. H., & Chou, C. H. (2013). The impact of microbial biotransformation of catechin in enhancing the allelopathic effects of Rhododendron formosanum. PLoS One, 8(12), e85162.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Young, S. L., Meyer, G. E., & Woldt, W. E. (2014). Future directions for automated weed management in precision agriculture. In Automation: The future of weed control in cropping systems (pp. 249–259). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  40. Zeng, R. S. (2014). Allelopathy-the solution is indirect. Journal of Chemical Ecology, 40(6), 515–516.PubMedCrossRefGoogle Scholar
  41. Zuo, S., Li, X., Ma, Y., & Yang, S. (2014). Soil microbes are linked to the allelopathic potential of different wheat genotypes. Plant and Soil, 378(1–2), 49–58.CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Waseem Mushtaq
    • 1
  • Mohammad Badruzzaman Siddiqui
    • 2
  • Khalid Rehman Hakeem
    • 3
  1. 1.Department of BotanyAligarh Muslim UniversityAligarhIndia
  2. 2.Department of BotanyAligarh Muslim UniversityAligarhIndia
  3. 3.Department of Biological SciencesKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations