Advertisement

Allelopathy pp 25-35 | Cite as

Allelopathy Potential of Important Crops

  • Waseem Mushtaq
  • Mohammad Badruzzaman Siddiqui
  • Khalid Rehman Hakeem
Chapter
  • 34 Downloads
Part of the SpringerBriefs in Agriculture book series (BRIEFSAGRO)

Abstract

Allelopathy, in simple terms, is a biochemical phenomenon by which a plant influences the growth, germination, and survival of another plant in its vicinity by producing certain chemical inhibitors into the environment known as allelochemicals. Though the use of allelopathic water extracts is economical and environment-friendly yet the reduction in weed biomass is less than herbicides and manual weeding. However, it may be possible to use these allelopathic water extracts with reduced rates of herbicides to increase their efficacy. A number of crops are known to possess allelopathic potential, some of which are enumerated below.

References

  1. Ahmad, N., & Bano, A. (2013). Impact of allelopathic potential of maize (Zea mays L.) on physiology and growth of soybean (Glycine maz (L.) Merr.). Pakistan Journal of Botany, 45, 1187–1192.Google Scholar
  2. Ahn, J. K., Chung, I. M., & Park, L. (2000). Allelopathic potential of rice hulls on germination and seedling growth of barnyardgrass. Agronomy Journal, 92, 1162–1167.CrossRefGoogle Scholar
  3. Alam, A., Hakim, M. A., Juraimi, A. S., Rafii, M. Y., Hasan, M. M., & Aslani, F. (2018). Potential allelopathic effects of rice plant aqueous extracts on germination and seedling growth of some rice field common weeds. Italian Journal of Agronomy, 13, 134–140.  https://doi.org/10.4081/ija.2018.1066CrossRefGoogle Scholar
  4. Ali, K. A. (2013). Allelopathic potential of some crop plant species on bread wheat (Triticum aestivum) using equal compartment agar method. Journal of Agriculture and Veterinary Science, 2, 52–55.CrossRefGoogle Scholar
  5. Alsaadawi, I. S. (2008). Allelopathic influence of decomposing wheat residues in agroecosystems. Journal of Crop Production, 4, 185–196.  https://doi.org/10.1300/J144v04n02CrossRefGoogle Scholar
  6. Alsaadawi, I. S., Al-Uqaili, J. K., Al-Hadithy, S. M., & Alrubeaa, A. J. (1985). Effect of gamma irradiation on allelopathic potential of Sorghum bicolor against weeds and nitrification. Journal of Chemical Ecology, 11, 1737–1738.CrossRefGoogle Scholar
  7. Alsaadawi, I. S., & Dayan, F. E. (2009). Potentials and prospects of sorghum allelopathy in agroecosystems. Allelopathy Journal, 24, 255–270.Google Scholar
  8. Al-tawaha, A. R. M., & Odat, N. (2010). Use of sorghum and maize allelopathic properties to inhibit germination and growth of wild barley (Hordeum spontaneum). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38, 124–127.Google Scholar
  9. Amb, M., & Ahluwalia, A. (2016). Allelopathy: Potential role to achieve new milestones in rice cultivation. Rice Science, 23, 165–183.  https://doi.org/10.1016/j.rsci.2016.06.001CrossRefGoogle Scholar
  10. Anaya, A. L., Ortega, R. C., & Rodriguez, V. N. (1992). Impact of allelopathy in the traditional management of agroecosystems in Mexico. In S. H. Rizvi & V. Rizvi (Eds.), Allelopathy: Basic and applied aspects (pp. 271–301). London, UK: Chapman and Hall Publication.CrossRefGoogle Scholar
  11. Ben-Hammouda, M., Kremer, R. J., Minor, H. C., & Sarwar, M. (1995). A chemical basis for differential allelopathic potential of sorghum hybrids on wheat. Journal of Chemical Ecology, 21, 775–786.CrossRefGoogle Scholar
  12. Bertholdsson, N.-O. (2010). Breeding spring wheat for improved allelopathic potential. Weed Research, 50, 49–57.  https://doi.org/10.1111/j.1365-3180.2009.00754.xCrossRefGoogle Scholar
  13. Cheema, Z. A., Khaliq, A., & Farooq, M. (2007). Allelopathic potential of sorghum (Sorghum bicolor L. Moench) cultivars for weed management. Allelopathy Journal, 20, 167–178.Google Scholar
  14. Chou, C., & Patrick, Z. (1976). Identification and phytotoxic activity of compounds produced during decomposition of corn and rye residues in soil. Journal of Chemical Ecology, 2, 369–387.CrossRefGoogle Scholar
  15. Dilday, R. H., Mattice, J. D., & Karen, A. (2001). Allelopathic potential in rice germplasm against ducksalad, redstem and barnyard grass. Journal of Crop Production, 4, 287–301.  https://doi.org/10.1300/J144v04n02CrossRefGoogle Scholar
  16. Fragasso, M., Iannucci, A., & Papa, R. (2013). Durum wheat and allelopathy: Towards wheat breeding for natural weed management. Frontiers in Plant Science, 4, 1–8.  https://doi.org/10.3389/fpls.2013.00375CrossRefGoogle Scholar
  17. Garcia, A. G. (1983). Seasonal variation in allelopathic effects of corn residue on corn and cress seedlings. Ames, IA: Iowa State University.CrossRefGoogle Scholar
  18. Garrity, D. P., Movillon, M., & Moody, K. (1992). Differential weed suppression ability in upland rice cultivars. Agronomy Journal, 82, 586–591.CrossRefGoogle Scholar
  19. Guenzi, W., & McCalla, T. (1962). Inhibition of germination and seedling development by crop residues. Soil Science Society of America Journal, 26, 456–458.CrossRefGoogle Scholar
  20. Jung, W. S., Kim, K. H., Ahn, J. K., Hahna, S. J., & Chungb, I. M. (2004). Allelopathic potential of rice (Oryza sativa L.) residues against Echinochloa crus-galli. Crop Protection, 23, 211–218.  https://doi.org/10.1016/j.cropro.2003.08.019CrossRefGoogle Scholar
  21. Kabir, A., Karim, S., Begum, M., & Juraimi, A. S. (2010). Allelopathic potential of rice varieties against spinach (Spinacia oleracea). Journal of Agricultural Biology, 12, 809–815.Google Scholar
  22. Kato-noguchi, H. (1999). Effect of light-irradiation on allelopathic potential of germinating maize. Phytochemistry, 52, 1023–1027.CrossRefGoogle Scholar
  23. Kato-noguchi, H. (2000). Allelopathy in Maize II.: Allelopathic potential of a new benzoxazolinone, 5-chloro-6-methoxy-2- benzoxazolinone and its analogue. Plant Production Science, 3, 47–50.  https://doi.org/10.1626/pps.3.47CrossRefGoogle Scholar
  24. Kato-noguchi, H., Sakata, Y., Takenokuchi, K., & Kosemura, S. (2000). Allelopathy in Maize I.: Isolation and identification of allelochemicals in maize seedlings. Plant Production Science, 3, 43–46.  https://doi.org/10.1626/pps.3.43CrossRefGoogle Scholar
  25. Khanh, T. D., Xuan, T. D., & Chung, I. M. (2007). Rice allelopathy and the possibility for weed management. Annals of Applied Biology, 151, 325–339.  https://doi.org/10.1111/j.1744-7348.2007.00183.xCrossRefGoogle Scholar
  26. Kim, S. Y., De Datta, S. K., Robles, R. P., Kim, K. U., Lee, S. C., & Shin, D. H. (1993). Allelopathic effect of sorghum extract and residues on selected crops and weeds. Korean Journal of Weed Science, 14, 34–41.Google Scholar
  27. Klein, R. R., & Miller, D. A. (1980). Allelopathy and its role in agriculture. Communications in Soil Science and Plant Analysis, 11, 43–56.  https://doi.org/10.1080/00103628009367014CrossRefGoogle Scholar
  28. Labbafi, M. R., Hejazi, A., Maighany, F., Samari Khalaj, H. R., & Mehrafarin, A. (2010). Evaluation of allelopathic potential of Iranian wheat (Triticum aestivum L.) cultivars against weeds. Agriculture and Biology Journal of North America, 1, 355–361.CrossRefGoogle Scholar
  29. Lam, Y., Sze, C. W., Tong, Y., Ng, T. B., Tang, S. C. W., Ho, J. C. M., … Zhang, Y. (2012). Research on the allelopathic potential of wheat. Agricultural Sciences, 3, 979–985.CrossRefGoogle Scholar
  30. Lehle, F. R., & Putnam, A. R. (1982). Quantification of allelopathic potential of sorghum residues by novel indexing of Richards’ function fitted to cumulative cress seed germination curves. Plant Physiology, 69, 1212–1216.CrossRefGoogle Scholar
  31. Machado, S. (2007). Allelopathic potential of various plant species on downy brome: Implications for weed control in wheat production. Agronomy Journal, 99, 127–132.  https://doi.org/10.2134/agronj2006.0122CrossRefGoogle Scholar
  32. Mahmood, A. (2009). Weed management in maize (Zea mays L.) through allelopathy. Faisalabad, Pakistan: University of Agriculture Faisalabad.Google Scholar
  33. Olofsdotter, M. (Ed.). (1998). Allelopathy in rice. Manila, Philippines: International Rice Research Institute.Google Scholar
  34. Olofsdotter, M. (2001). Rice—A step toward use of allelopathy. Agronomy Journal, 93, 3–8.CrossRefGoogle Scholar
  35. Olofsdotter, M., Jensen, L., & Courtois, B. (2002). Improving crop competitive ability using allelopathy - An example from rice. Plant Breeding, 121, 1–9.CrossRefGoogle Scholar
  36. Oueslati, O. (2003). Allelopathy in two durum wheat (Triticum durum L.) varieties. Agriculture, Ecosystems and Environment, 96, 161–163.CrossRefGoogle Scholar
  37. Panaisuk, O., Bills, D. D., & Leather, G. R. (1986). Allelopathic influence of Sorghum bicolor on weeds during germination and early development of seedlings. Journal of Chemical Ecology, 12, 1533–1543.CrossRefGoogle Scholar
  38. Peng, X. (2019). Allelopathic effects of water extracts of maize leaf on three Chinese herbal medicinal plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47, 194–200.  https://doi.org/10.15835/nbha47111226CrossRefGoogle Scholar
  39. Purvis, C. (1990). Differential responses of wheat to retained crop stubbles: I. Effect of stubble type and degree of decomposition. Australian Journal of Agricultural Research, 41, 225–242.CrossRefGoogle Scholar
  40. Rimando, A. M., Olofsdotter, M., Dayan, F. E., & Duke, S. O. (2001). Searching for rice allelochemicals: An example of bioassay-guided isolation. Agronomy Journal, 93, 16–20.CrossRefGoogle Scholar
  41. Rizvi, S. J. H., Haque, H., Singh, V. K., & Rizvi, V. (1992). A discipline called allelopathy. In S. J. H. Rizvi & V. Rizvi (Eds.), Allelopathy: Basic and applied aspects (pp. 1–10). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  42. Roth, C. M., Shroyer, J. P., & Paulsen, G. M. (2000). Allelopathy of sorghum on wheat under several tillage systems. Agriculture, Food and Analytical Bacteriology, 92, 855–860.Google Scholar
  43. Sene, M., Dore, T., & Pellissier, F. (2000). Effect of phenolic acids in soil under and between rows of a prior sorghum (Sorghum bicolor) crop on germination, emergence, and seedling growth of peanut (Arachis hypogea). Journal of Chemical Ecology, 26, 625–637.CrossRefGoogle Scholar
  44. Shibayama, H. (2001). Weeds and weed management in rice production in Japan. Weed Biology and Management, 1, 53–60.CrossRefGoogle Scholar
  45. Spruell, J. A. (1984). Allelopathic potential of wheat accessions. Norman, OK: The University of Oklahoma.Google Scholar
  46. Steinsiek, J. W., Oliver, L. R., & Collins, F. C. (1982). Allelopathic potential of wheat (Triticum aestivum) straw on selected weed species. Weed Science, 30, 495–497.CrossRefGoogle Scholar
  47. Storozhyk, L., Mykolayko, V., & Mykolayko, I. (2019). Allelopathic potential of sugar sorghum (Sorghum bicolor (L.) Moench) seeds. Journal of Microbiology and Biotechnology of Food Science, 9, 93–98.  https://doi.org/10.15414/jmbfs.2019.9.1.93-98CrossRefGoogle Scholar
  48. Tibugari, H., Manyeruke, N., Mafere, G., Chakavarika, M., Nyamuzuwe, L., Marumahoko, P., & Mandumbu, R. (2019). Allelopathic effect of stressing sorghum on weed growth. Cogent Biology, 5, 1–10.  https://doi.org/10.1080/23312025.2019.1684865CrossRefGoogle Scholar
  49. Weston, L. A., Harmon, R., & Mueller, S. (1989). Allelopathic potential of sorghum-sudangrass hybrid (Sudex). Journal of Chemical Ecology, 15, 1855–1865.CrossRefGoogle Scholar
  50. Wu, H., An, M., Liu, D. L., Pratley, J., & Lemerle, D. (2008). Recent advances in wheat allelopathy. In R. Zeng, A. Mallik, & S. Luo (Eds.), Allelopathy in sustainable agriculture and forestry (pp. 235–254). New York NY: Springer.CrossRefGoogle Scholar
  51. Wu, H., Pratley, H., Lemerle, D., & Haig, T. (2000). Laboratory screening for allelopathic potential of wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum). Australian Journal of Agricultural Research, 51, 259–266.CrossRefGoogle Scholar
  52. Wu, H., Pratley, J., Lemerle, D., & Haig, T. (2001). Allelopathy in wheat (Triticum aestivum). Annals of Applied Biology, 139, 1–9.CrossRefGoogle Scholar
  53. Wu, J., Pratley, H., Ma, W., & Haig, T. (2003). Quantitative trait loci and molecular markers associated with wheat allelopathy. Theoretical and Applied Genetics, 107, 1477–1481.  https://doi.org/10.1007/s00122-003-1394-xCrossRefPubMedGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Waseem Mushtaq
    • 1
  • Mohammad Badruzzaman Siddiqui
    • 2
  • Khalid Rehman Hakeem
    • 3
  1. 1.Department of BotanyAligarh Muslim UniversityAligarhIndia
  2. 2.Department of BotanyAligarh Muslim UniversityAligarhIndia
  3. 3.Department of Biological SciencesKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations