Advertisement

Differential Equations and Uniqueness Theorems for the Generalized Attenuated Ray Transforms of Tensor Fields

  • Evgeny Yu. Derevtsov
  • Yuriy S. VolkovEmail author
  • Thomas Schuster
Conference paper
  • 11 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11974)

Abstract

Properties of operators of generalized attenuated ray transforms (ART) are investigated. Starting with Radon transform in the mathematical model of computer tomography, attenuated ray transform in emission tomography and longitudinal ray transform in tensor tomography, we come to the operators of ART of order k over symmetric m-tensor fields, depending on spatial and temporal variables. The operators of ART of order k over tensor fields contain complex-valued absorption, different weights, and depend on time. Connections between ART of various orders are established by means of application of linear part of transport equation. This connections lead to the inhomogeneous k-th order differential equations for the ART of order k over symmetric m-tensor field. The right hand parts of such equations are m-homogeneous polynomials containing the components of the tensor field as the coefficients. The polynomial variables are the components \(\xi ^j\) of direction vector \(\xi \) participating in differential part of transport equation. Uniqueness theorems of boundary-value and initial boundary-value problems for the obtained equations are proved, with significant application of Gauss-Ostrogradsky theorem. The connections of specified operators with integral geometry of tensor fields, emission tomography, photometry and wave optics allow to treat the problem of inversion of the ART of order k as the inverse problem of determining the right hand part of certain differential equation.

Keywords

Tensor tomography Attenuated ray transform Transport equation Boundary-value problem Uniqueness theorem 

References

  1. 1.
    Budinger, T., Gullberg, G., Huesman, R.: Emission computed tomography. In: Herman, G. (ed.) Image Reconstruction from Projections: Implementation and Applications, pp. 147–246. Springer, Heidelberg (1979).  https://doi.org/10.1007/3-540-09417-2_5CrossRefGoogle Scholar
  2. 2.
    Natterer, F.: The Mathematics of Computerized Tomography. Wiley, Chichester (1986)zbMATHGoogle Scholar
  3. 3.
    Natterer, F.: Inverting the attenuated vectorial Radon transform. J. Inverse Ill Posed Probl. 13(1), 93–101 (2005).  https://doi.org/10.1515/1569394053583720MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Kazantsev, S., Bukhgeim, A.: Inversion of the scalar and vector attenuated X-ray transforms in a unit disc. J. Inverse Ill Posed Probl. 15(7), 735–765 (2007).  https://doi.org/10.1515/jiip.2007.040MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Tamasan, A.: Tomographic reconstruction of vector fields in variable background media. Inverse Probl. 23(5), 2197–2205 (2007).  https://doi.org/10.1088/0266-5611/23/5/022MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ainsworth, G.: The attenuated magnetic ray transform on surfaces. Inverse Probl. Imaging 7(1), 27–46 (2013).  https://doi.org/10.3934/ipi.2013.7.27MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Sadiq, K., Tamasan, A.: On the range characterization of the two-dimensional attenuated doppler transform. SIAM J. Math. Anal. 47(3), 2001–2021 (2015).  https://doi.org/10.1137/140984282MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Monard, F.: Inversion of the attenuated geodesic X-ray transform over functions and vector fields on simple surfaces. SIAM J. Math. Anal. 48(2), 1155–1177 (2016).  https://doi.org/10.1137/15M1016412MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Aben, H., Puro, A.: Photoelastic tomography for three-dimensional flow birefringence studies. Inverse Probl. 13(2), 215–221 (1997).  https://doi.org/10.1088/0266-5611/13/2/002MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ainola, L., Aben, H.: Principal formulas of integrated photoelasticity of characteristic parameters. J. Opt. Soc. Am. A 22(6), 1181–1186 (2005).  https://doi.org/10.1364/JOSAA.22.001181MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lionheart, W.R.B., Withers, P.J.: Diffraction tomography of strain. Inverse Probl. 31(4), 045005 (2015).  https://doi.org/10.1088/0266-5611/31/4/045005MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Karassiov, V.P.: Polarization tomography of quantum radiation: theoretical aspects and operator approach. Theor. Math. Phys. 145(3), 1666–1677 (2005).  https://doi.org/10.1007/s11232-005-0189-4MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Panin, V.Y., Zeng, G.L., Defrise, M., Gullberg, G.T.: Diffusion tensor MR imaging of principal directions: a tensor tomography approach. Phys. Med. Biol. 47(15), 2737–2757 (2002).  https://doi.org/10.1088/0031-9155/47/15/314CrossRefGoogle Scholar
  14. 14.
    Schmitt, J.M., Xiang, S.H.: Cross-polarized backscatter in optical coherence tomography of biological tissue. Opt. Lett. 23(13), 1060–1062 (1998).  https://doi.org/10.1364/OL.23.001060CrossRefGoogle Scholar
  15. 15.
    Kuranov, R.V., Sapozhnikova, V.V., et al.: Complementary use of cross-polarization and standard OCT for differential diagnosis of pathological tissues. Opt. Express 10(15), 707–713 (2002).  https://doi.org/10.1364/OE.10.000707CrossRefGoogle Scholar
  16. 16.
    Gelikonov, V.M., Gelikonov, G.V.: New approach to cross-polarized optical coherence tomography based on orthogonal arbitrarily polarized modes. Laser Phys. Lett. 3(9), 445–451 (2006).  https://doi.org/10.1002/lapl.200610030CrossRefGoogle Scholar
  17. 17.
    Sharafutdinov, V.: A problem of integral geometry for generalized tensor fields on \(R^n\). Sov. Math. Dokl. 33(1), 100–102 (1986)zbMATHGoogle Scholar
  18. 18.
    Sharafutdinov, V.: Integral Geometry of Tensor Fields. VSP, Utrecht (1994)CrossRefGoogle Scholar
  19. 19.
    Derevtsov, E.Yu., Polyakova, A.P.: Solution of the integral geometry problem for 2-tensor fields by the singular value decomposition method. J. Math. Sci. 202(1), 50–71 (2014).  https://doi.org/10.1007/s10958-014-2033-6MathSciNetCrossRefGoogle Scholar
  20. 20.
    Svetov, I.E., Derevtsov, E.Yu., Volkov, Yu.S, Schuster, T.: A numerical solver based on B-splines for 2D vector field tomography in a refracting medium. Math. Comput. Simul. 97, 207–223 (2014).  https://doi.org/10.1016/j.matcom.2013.10.002MathSciNetCrossRefGoogle Scholar
  21. 21.
    Derevtsov, E., Svetov, I.: Tomography of tensor fields in the plane. Eurasian J. Math. Comput. Appl. 3(2), 24–68 (2015)Google Scholar
  22. 22.
    Derevtsov, E.Yu., Maltseva, S.V.: Reconstruction of the singular support of a tensor field given in a refracting medium by its ray transform. J. Appl. Ind. Math. 9(4), 447–460 (2015).  https://doi.org/10.1134/S1990478915040018MathSciNetCrossRefGoogle Scholar
  23. 23.
    Monard, F.: Efficient tensor tomography in fan-beam coordinates. Inverse Probl. Imaging 10(2), 433–459 (2016).  https://doi.org/10.3934/ipi.2016007MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Monard, F.: Efficient tensor tomography in fan-beam coordinates. II: attenuated transforms. Inverse Probl. Imaging 12(2), 433–460 (2018).  https://doi.org/10.3934/ipi.2018019MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Mueller, R.K., Kaveh, M., Wade, G.: Reconstructive tomography and applications to ultrasonic. Proc. IEEE 67(4), 567–587 (1979).  https://doi.org/10.1109/PROC.1979.11284CrossRefGoogle Scholar
  26. 26.
    Ball, J., Johnson, S.A., Stenger, F.: Explicit inversion of the Helmholtz equation for ultrasound insonification and spherical detection. In: Wang, K. (ed.) Acoustical Imaging, vol. 9. Springer, Boston (1980).  https://doi.org/10.1007/978-1-4684-3755-3_26CrossRefGoogle Scholar
  27. 27.
    Schmitt, U., Louis, A.K.: Efficient algorithms for the regularization of dynamic inverse problems: I. Theory. Inverse Probl. 18(3), 645–658 (2002).  https://doi.org/10.1088/0266-5611/18/3/308MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Schmitt, U., Louis, A.K., Wolters, C., Vauhkonen, M.: Efficient algorithms for the regularization of dynamic inverse problems: II. Applications. Inverse Probl. 18(3), 659–676 (2002).  https://doi.org/10.1088/0266-5611/18/3/309MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Hahn, B., Louis, A.K.: Reconstruction in the three-dimensional parallel scanning geometry with application in synchrotron-based X-ray tomography. Inverse Probl. 28(4), 045013 (2012).  https://doi.org/10.1088/0266-5611/28/4/045013MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kireitov, V.R.: On the problem of determining an optical surface by its reflections. Funct. Anal. Appl. 10(3), 201–209 (1976).  https://doi.org/10.1007/BF01075526CrossRefGoogle Scholar
  31. 31.
    Born, M., Wolf, E.: Principles of Optics. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  32. 32.
    Goodman, J.: Introduction to Fourier optics. McGraw-Hill Book Company, New York (1968)Google Scholar
  33. 33.
    Kireitov, V.R.: Inverse Problems of the Photometry. Computing Center of the USSR Acad. Sci., Novosibirsk (1983). (in Russian)Google Scholar
  34. 34.
    Case, K., Zweifel, P.: Linear Transport Theory. Addison-Wesley Publishing Company, Boston (1967)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Sobolev Institute of Mathematics SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Saarland UniversitySaarbrückenGermany

Personalised recommendations