Differential Equations and Uniqueness Theorems for the Generalized Attenuated Ray Transforms of Tensor Fields

  • Evgeny Yu. Derevtsov
  • Yuriy S. VolkovEmail author
  • Thomas Schuster
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11974)


Properties of operators of generalized attenuated ray transforms (ART) are investigated. Starting with Radon transform in the mathematical model of computer tomography, attenuated ray transform in emission tomography and longitudinal ray transform in tensor tomography, we come to the operators of ART of order k over symmetric m-tensor fields, depending on spatial and temporal variables. The operators of ART of order k over tensor fields contain complex-valued absorption, different weights, and depend on time. Connections between ART of various orders are established by means of application of linear part of transport equation. This connections lead to the inhomogeneous k-th order differential equations for the ART of order k over symmetric m-tensor field. The right hand parts of such equations are m-homogeneous polynomials containing the components of the tensor field as the coefficients. The polynomial variables are the components \(\xi ^j\) of direction vector \(\xi \) participating in differential part of transport equation. Uniqueness theorems of boundary-value and initial boundary-value problems for the obtained equations are proved, with significant application of Gauss-Ostrogradsky theorem. The connections of specified operators with integral geometry of tensor fields, emission tomography, photometry and wave optics allow to treat the problem of inversion of the ART of order k as the inverse problem of determining the right hand part of certain differential equation.


Tensor tomography Attenuated ray transform Transport equation Boundary-value problem Uniqueness theorem 


  1. 1.
    Budinger, T., Gullberg, G., Huesman, R.: Emission computed tomography. In: Herman, G. (ed.) Image Reconstruction from Projections: Implementation and Applications, pp. 147–246. Springer, Heidelberg (1979). Scholar
  2. 2.
    Natterer, F.: The Mathematics of Computerized Tomography. Wiley, Chichester (1986)zbMATHGoogle Scholar
  3. 3.
    Natterer, F.: Inverting the attenuated vectorial Radon transform. J. Inverse Ill Posed Probl. 13(1), 93–101 (2005). Scholar
  4. 4.
    Kazantsev, S., Bukhgeim, A.: Inversion of the scalar and vector attenuated X-ray transforms in a unit disc. J. Inverse Ill Posed Probl. 15(7), 735–765 (2007). Scholar
  5. 5.
    Tamasan, A.: Tomographic reconstruction of vector fields in variable background media. Inverse Probl. 23(5), 2197–2205 (2007). Scholar
  6. 6.
    Ainsworth, G.: The attenuated magnetic ray transform on surfaces. Inverse Probl. Imaging 7(1), 27–46 (2013). Scholar
  7. 7.
    Sadiq, K., Tamasan, A.: On the range characterization of the two-dimensional attenuated doppler transform. SIAM J. Math. Anal. 47(3), 2001–2021 (2015). Scholar
  8. 8.
    Monard, F.: Inversion of the attenuated geodesic X-ray transform over functions and vector fields on simple surfaces. SIAM J. Math. Anal. 48(2), 1155–1177 (2016). Scholar
  9. 9.
    Aben, H., Puro, A.: Photoelastic tomography for three-dimensional flow birefringence studies. Inverse Probl. 13(2), 215–221 (1997). Scholar
  10. 10.
    Ainola, L., Aben, H.: Principal formulas of integrated photoelasticity of characteristic parameters. J. Opt. Soc. Am. A 22(6), 1181–1186 (2005). Scholar
  11. 11.
    Lionheart, W.R.B., Withers, P.J.: Diffraction tomography of strain. Inverse Probl. 31(4), 045005 (2015). Scholar
  12. 12.
    Karassiov, V.P.: Polarization tomography of quantum radiation: theoretical aspects and operator approach. Theor. Math. Phys. 145(3), 1666–1677 (2005). Scholar
  13. 13.
    Panin, V.Y., Zeng, G.L., Defrise, M., Gullberg, G.T.: Diffusion tensor MR imaging of principal directions: a tensor tomography approach. Phys. Med. Biol. 47(15), 2737–2757 (2002). Scholar
  14. 14.
    Schmitt, J.M., Xiang, S.H.: Cross-polarized backscatter in optical coherence tomography of biological tissue. Opt. Lett. 23(13), 1060–1062 (1998). Scholar
  15. 15.
    Kuranov, R.V., Sapozhnikova, V.V., et al.: Complementary use of cross-polarization and standard OCT for differential diagnosis of pathological tissues. Opt. Express 10(15), 707–713 (2002). Scholar
  16. 16.
    Gelikonov, V.M., Gelikonov, G.V.: New approach to cross-polarized optical coherence tomography based on orthogonal arbitrarily polarized modes. Laser Phys. Lett. 3(9), 445–451 (2006). Scholar
  17. 17.
    Sharafutdinov, V.: A problem of integral geometry for generalized tensor fields on \(R^n\). Sov. Math. Dokl. 33(1), 100–102 (1986)zbMATHGoogle Scholar
  18. 18.
    Sharafutdinov, V.: Integral Geometry of Tensor Fields. VSP, Utrecht (1994)CrossRefGoogle Scholar
  19. 19.
    Derevtsov, E.Yu., Polyakova, A.P.: Solution of the integral geometry problem for 2-tensor fields by the singular value decomposition method. J. Math. Sci. 202(1), 50–71 (2014). Scholar
  20. 20.
    Svetov, I.E., Derevtsov, E.Yu., Volkov, Yu.S, Schuster, T.: A numerical solver based on B-splines for 2D vector field tomography in a refracting medium. Math. Comput. Simul. 97, 207–223 (2014). Scholar
  21. 21.
    Derevtsov, E., Svetov, I.: Tomography of tensor fields in the plane. Eurasian J. Math. Comput. Appl. 3(2), 24–68 (2015)Google Scholar
  22. 22.
    Derevtsov, E.Yu., Maltseva, S.V.: Reconstruction of the singular support of a tensor field given in a refracting medium by its ray transform. J. Appl. Ind. Math. 9(4), 447–460 (2015). Scholar
  23. 23.
    Monard, F.: Efficient tensor tomography in fan-beam coordinates. Inverse Probl. Imaging 10(2), 433–459 (2016). Scholar
  24. 24.
    Monard, F.: Efficient tensor tomography in fan-beam coordinates. II: attenuated transforms. Inverse Probl. Imaging 12(2), 433–460 (2018). Scholar
  25. 25.
    Mueller, R.K., Kaveh, M., Wade, G.: Reconstructive tomography and applications to ultrasonic. Proc. IEEE 67(4), 567–587 (1979). Scholar
  26. 26.
    Ball, J., Johnson, S.A., Stenger, F.: Explicit inversion of the Helmholtz equation for ultrasound insonification and spherical detection. In: Wang, K. (ed.) Acoustical Imaging, vol. 9. Springer, Boston (1980). Scholar
  27. 27.
    Schmitt, U., Louis, A.K.: Efficient algorithms for the regularization of dynamic inverse problems: I. Theory. Inverse Probl. 18(3), 645–658 (2002). Scholar
  28. 28.
    Schmitt, U., Louis, A.K., Wolters, C., Vauhkonen, M.: Efficient algorithms for the regularization of dynamic inverse problems: II. Applications. Inverse Probl. 18(3), 659–676 (2002). Scholar
  29. 29.
    Hahn, B., Louis, A.K.: Reconstruction in the three-dimensional parallel scanning geometry with application in synchrotron-based X-ray tomography. Inverse Probl. 28(4), 045013 (2012). Scholar
  30. 30.
    Kireitov, V.R.: On the problem of determining an optical surface by its reflections. Funct. Anal. Appl. 10(3), 201–209 (1976). Scholar
  31. 31.
    Born, M., Wolf, E.: Principles of Optics. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  32. 32.
    Goodman, J.: Introduction to Fourier optics. McGraw-Hill Book Company, New York (1968)Google Scholar
  33. 33.
    Kireitov, V.R.: Inverse Problems of the Photometry. Computing Center of the USSR Acad. Sci., Novosibirsk (1983). (in Russian)Google Scholar
  34. 34.
    Case, K., Zweifel, P.: Linear Transport Theory. Addison-Wesley Publishing Company, Boston (1967)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Sobolev Institute of Mathematics SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Saarland UniversitySaarbrückenGermany

Personalised recommendations