Advertisement

The Method of Approximate Inverse in Slice-by-Slice Vector Tomography Problems

  • Ivan E. SvetovEmail author
  • Svetlana V. Maltseva
  • Alfred K. Louis
Conference paper
  • 37 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11974)

Abstract

A numerical solution of the problem of recovering the solenoidal part of three-dimensional vector field using the incomplete tomographic data is proposed. Namely, values of the ray transform for all straight lines, which are parallel to one of the coordinate planes, are known. The recovery algorithms are based on the method of approximate inverse.

Keywords

Vector tomography Ray transform Solenoidal vector field Method of approximate inverse 

References

  1. 1.
    Sharafutdinov, V.A.: Integral Geometry of Tensor Fields. VSP, Utrecht (1994).  https://doi.org/10.1515/9783110900095
  2. 2.
    Denisjuk, A.: Inversion of the x-ray transform for 3D symmetric tensor fields with sources on a curve. Inverse Prob. 22(2), 399–411 (2006).  https://doi.org/10.1088/0266-5611/22/2/001MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Sharafutdinov, V.: Slice-by-slice reconstruction algorithm for vector tomography with incomplete data. Inverse Prob. 23(6), 2603–2627 (2007).  https://doi.org/10.1088/0266-5611/23/6/021MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Svetov, I.E.: Reconstruction of the solenoidal part of a three-dimensional vector field by its ray transforms along straight lines parallel to coordinate planes. Numer. Anal. Appl. 5(3), 271–283 (2012).  https://doi.org/10.1134/S1995423912030093CrossRefzbMATHGoogle Scholar
  5. 5.
    Svetov, I.: Slice-by-slice numerical solution of \(3D\)-vector tomography problem. In: Kosmas, T., Vagenas, E., Vlachos, D. (eds.) Journal of Physics: Conference Series, IC-MSQUARE 2012, vol. 410, p. 012042. IOP Publishing Ltd., Bristol (2013).  https://doi.org/10.1088/1742-6596/410/1/012042Google Scholar
  6. 6.
    Derevtsov, E.Y., Efimov, A.V., Louis, A.K., Schuster, T.: Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography. J. Inverse Ill-posed Probl. 19(4–5), 689–715 (2011).  https://doi.org/10.1515/jiip.2011.047MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Svetov, I.E., Derevtsov, E.Y., Volkov, Y.S., Schuster, T.: A numerical solver based on B-splines for 2D vector field tomography in a refracting medium. Math. Comput. Simul. 97, 207–223 (2014).  https://doi.org/10.1016/j.matcom.2013.10.002MathSciNetCrossRefGoogle Scholar
  8. 8.
    Derevtsov, E.Y., Svetov, I.E.: Tomography of tensor fields in the plain. Eurasian J. Math. Comput. Appl. 3(2), 24–68 (2015)Google Scholar
  9. 9.
    Polyakova, A.: Reconstruction of potential part of 3D vector field by using singular value decomposition. In: Kosmas, T., Vagenas, E., Vlachos, D. (eds.) IC-MSQUARE 2012, Journal of Physics: Conference Series, vol. 410, p. 012015. IOP Publishing Ltd., Bristol (2013).  https://doi.org/10.1088/1742-6596/410/1/012015Google Scholar
  10. 10.
    Polyakova, A.P.: Reconstruction of a vector field in a ball from its normal Radon transform. J. Math. Sci. 205(3), 418–439 (2015).  https://doi.org/10.1007/s10958-015-2256-1MathSciNetCrossRefGoogle Scholar
  11. 11.
    Polyakova, A.P., Svetov, I.E.: Numerical solution of the problem of reconstructing a potential vector field in the unit ball from its normal Radon transform. J. Appl. Indu. Math. 9(4), 547–558 (2015).  https://doi.org/10.1134/S1990478915040110CrossRefzbMATHGoogle Scholar
  12. 12.
    Louis, A.K.: Inverse und schlecht gestellte Probleme. Vieweg+Teubner Verlag, Stuttgart (1989). https://doi.org/10.1007/978-3-322-84808-6CrossRefGoogle Scholar
  13. 13.
    Louis, A.K., Maass, P.: A mollifier method for linear operator equations of the first kind. Inverse Prob. 6(3), 427–440 (1990).  https://doi.org/10.1088/0266-5611/6/3/011MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Louis, A.K.: Approximate inverse for linear and some nonlinear problems. Inverse Prob. 12(2), 175–190 (1996).  https://doi.org/10.1088/0266-5611/12/2/005CrossRefzbMATHGoogle Scholar
  15. 15.
    Rieder, A., Schuster, T.: The approximate inverse in action with an application to computerized tomography. SIAM J. Numer. Anal. 37(6), 1909–1929 (2000).  https://doi.org/10.1137/S0036142998347619MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rieder, A., Schuster, T.: The approximate inverse in action III: 3D-Doppler tomography. Numer. Math. 97(2), 353–378 (2004).  https://doi.org/10.1007/s00211-003-0512-7MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Schuster, T.: Defect correction in vector field tomography: detecting the potential part of a field using BEM and implementation of the method. Inverse Prob. 21(1), 75–91 (2005).  https://doi.org/10.1088/0266-5611/21/1/006MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Svetov, I., Maltseva, S., Polyakova, A.: Numerical solution of 2D-vector tomography problem using the method of approximate inverse. In: Ashyralyev, A., Lukashov, A. (eds.), ICAAM 2016, AIP Conference Proceedings, vol. 1759, p. 020132. AIP Publishing LLC, Melville (2016).  https://doi.org/10.1063/1.4959746
  19. 19.
    Derevtsov, E.Y., Louis, A.K., Maltseva, S.V., Polyakova, A.P., Svetov, I.E.: Numerical solvers based on the method of approximate inverse for 2D vector and 2-tensor tomography problems. Inverse Prob. 33(12), 124001 (2017).  https://doi.org/10.1088/1361-6420/aa8f5aMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Saarland UniversitySaarbruckenGermany

Personalised recommendations