Advertisement

The Singular Value Decomposition of the Operators of the Dynamic Ray Transforms Acting on 2D Vector Fields

  • Anna P. PolyakovaEmail author
  • Ivan E. Svetov
  • Bernadette N. Hahn
Conference paper
  • 23 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11974)

Abstract

The problem of dynamic 2D vector tomography is considered. Object motion is a combination of rotation and shifting. Properties of the dynamic ray transform operators are investigated. Singular value decomposition of the operators is constructed with usage of classic orthogonal polynomials.

Keywords

Dynamic vector tomography Longitudinal ray transform Transverse ray transform Singular value decomposition Orthogonal polynomial 

References

  1. 1.
    Sharafutdinov, V.A.: Integral geometry of tensor fields. VSP, Utrecht (1994).  https://doi.org/10.1515/9783110900095
  2. 2.
    Svetov, I.E.: Reconstruction of the solenoidal part of a three-dimensional vector field by its ray transforms along straight lines parallel to coordinate planes. Numer. Anal. Appl. 5(3), 271–283 (2012).  https://doi.org/10.1134/S1995423912030093CrossRefzbMATHGoogle Scholar
  3. 3.
    Derevtsov, E.Yu., Svetov, I.E.: Tomography of tensor fields in the plain. Eur. J. Math. Comput. Appl. 3(2), 24–68 (2015)Google Scholar
  4. 4.
    Derevtsov, E.Yu., Kashina, I.G.: Numerical solution of a vector tomography problem with the help of polynomial bases. Siberian J. Numer. Math. 5(3), 233–254 (2002) (in Russian)Google Scholar
  5. 5.
    Derevtsov, E.Yu., Svetov, I.E., Volkov, Yu.S., Schuster, T.: Numerical \(B\)-spline solution of emission and vector 2\(D\)-tomography problems for media with absorbtion and refraction. In: Remy, J.-G. (eds.) Proceedings of the 2008 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering SIBIRCON 2008, pp. 212–217 (2008).  https://doi.org/10.1109/SIBIRCON.2008.4602618
  6. 6.
    Svetov, I.E., Derevtsov, E.Yu., Volkov, Yu.S., Schuster, T.: A numerical solver based on B-splines for 2D vector field tomography in a refracting medium. Math. Comput. Simul. 97, 207–223 (2014).  https://doi.org/10.1016/j.matcom.2013.10.002MathSciNetCrossRefGoogle Scholar
  7. 7.
    Derevtsov, E.Yu., Kazantsev, S.G., Schuster, T.: Polynomial bases for subspaces of vector fields in the unit ball. Method of ridge functions. J. Inverse Ill-Posed Probl. 15(1), 1–38 (2007).  https://doi.org/10.1515/JIIP.2007.002MathSciNetCrossRefGoogle Scholar
  8. 8.
    Derevtsov, E.Yu., Efimov, A.V., Louis, A.K., Schuster, T.: Singular value decomposi-tion and its application to numerical inversion for ray transforms in 2D vector tomography. J. Inverse Ill-Posed Probl. 19(4–5), 689–715 (2011).  https://doi.org/10.1515/jiip.2011.047
  9. 9.
    Svetov, I.E., Polyakova, A.P.: Comparison of two algorithms for the numerical solution of the two-dimensional vector tomography. Siberian Electron. Math. Rep. 10, 90–108 (2013) (in Russian).  https://doi.org/10.17377/semi.2013.10.009
  10. 10.
    Polyakova, A.P.: Reconstruction of a vector field in a ball from its normal radon transform. J. Math. Sci. 205(3), 418–439 (2015).  https://doi.org/10.1007/s10958-015-2256-1MathSciNetCrossRefGoogle Scholar
  11. 11.
    Polyakova, A.P., Svetov, I.E.: Numerical solution of the problem of reconstructing a potential vector field in the unit ball from its normal Radon transform. J. Appl. Ind. Math. 9(4), 547–558 (2015).  https://doi.org/10.1134/S1990478915040110MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rieder, A., Schuster, T.: The approximate inverse in action III: 3D-Doppler tomography. Numer. Math. 97(2), 353–378 (2004).  https://doi.org/10.1007/s00211-003-0512-7MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Schuster, T.: Defect correction in vector field tomography: detecting the potential part of a field using BEM and implementation of the method. Inverse Prob. 21(1), 75–91 (2005).  https://doi.org/10.1088/0266-5611/21/1/006MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Svetov, I.E., Maltseva, S.V., Polyakova, A.P.: Numerical solution of 2D-vector tomography problem using the method of approximate inverse. In: Ashyralyev, A., Lukashov, A. (eds.) ICAAM 2016, AIP Conference Proceedings, vol. 1759, p. 020132. AIP Publishing LLC, Melville (2016).  https://doi.org/10.1063/1.4959746
  15. 15.
    Derevtsov, E.Yu., Louis, A.K., Maltseva, S.V., Polyakova, A.P., Svetov, I.E.: Numerical solvers based on the method of approximate inverse for 2D vector and 2-tensor tomography problems. Inverse Prob. 33(12), 124001 (2017).  https://doi.org/10.1088/1361-6420/aa8f5aMathSciNetCrossRefGoogle Scholar
  16. 16.
    Hahn, B.: Efficient algorithms for linear dynamic inverse problems with known motion. Inverse Prob. 30(3), 035008 (2014).  https://doi.org/10.1088/0266-5611/30/3/035008MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hahn, B.: Dynamic linear inverse problems with moderate movements of the object: ill-posedness and regularization. Inverse Prob. Imaging 9(2), 395–413 (2015).  https://doi.org/10.3934/ipi.2015.9.395MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hahn, B.: Null space and resolution in dynamic computerized tomography. Inverse Prob. 32(2), 025006 (2016).  https://doi.org/10.1088/0266-5611/32/2/025006MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.University of WuerzburgWuerzburgGermany

Personalised recommendations