On Linear Spline Wavelets with Shifted Supports

  • Svetlana Makarova
  • Anton MakarovEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11974)


We examine Faber’s type decompositions for spaces of linear minimal splines constructed on nonuniform grids on a segment. A characteristic feature of the Faber decomposition is that the basis wavelets are centered around the knots that do not belong to the coarse grid. The construction of the lazy wavelets begins with the use of the basis functions in refined spline space centered at the odd knots. We propose to use as wavelets the functions centered at the even knots under some conditions. In contrast to lazy wavelets, in this case the decomposition system of equations has a unique solution, which can be found by the sweep method with the guarantee of well-posedness and stability.


Minimal splines B-spline Wavelets Nonuniform grid 


  1. 1.
    Faber, G.: Über stetige functionen. Math. Annalen. 66, 81–94 (1909)CrossRefGoogle Scholar
  2. 2.
    Sweldens, W.: The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmonic Analys. 3(2), 186–200 (1996)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Stollnitz, E.J., DeRose, T.D., Salesin, D.H.: Wavelets for Computer Graphics: Theory and Applications. Morgan Kaufmann, San Francisco (1996)Google Scholar
  4. 4.
    Dem’yanovich, Y.K.: Smoothness of spline spaces and wavelet decompositions. Doklady Math. 71(2), 220–223 (2005)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Lyche, T., Mørken, K., Pelosi, F.: Stable, linear spline wavelets on nonuniform knots with vanishing moments. Comput. Aided Geom. Design. 26, 203–216 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Atkinson, B.W., Bruff, D.O., Geronimo, J.S., Hardin, D.P.: Wavelets centered on a knot sequence: theory, construction, and applications. J. Fourier. Anal. Appl. 21(3), 509–553 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Shumilov, B.M.: Splitting algorithms for the wavelet transform of first-degree splines on nonuniform grids. Comput. Math. Math. Phys. 56(7), 1209–1219 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dem’yanovich, Y.K., Ponomarev, A.S.: Realization of the spline-wavelet decomposition of the first order. J. Math. Sci. 224(6), 833–860 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Makarov, A.A.: On wavelet decomposition of spaces of first order splines. J. Math. Sci. 156(4), 617–631 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Makarov, A.A.: Algorithms of wavelet compression of linear spline spaces. Vestnik St. Petersburg Univ.: Math. 45(2), 82–92 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Makarov, A.A.: On two algorithms of wavelet decomposition for spaces of linear splines. J. Math. Sci. 232(6), 926–937 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dem’yanovich, Yu.K.: Local Approximation on a Manifold and Minimal Splines [in Russian], St. Petersburg State University (1994)Google Scholar
  13. 13.
    Makarov, A.A.: Construction of splines of maximal smoothness. J. Math. Sci. 178(6), 589–604 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Makarov, A., Makarova, S.: On lazy Faber’s type decomposition for linear splines. AIP Conf. Proc. 2164, 110006 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.St. Petersburg State University of Aerospace InstrumentationSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations