Advertisement

On Acceleration of Derivative-Free Univariate Lipschitz Global Optimization Methods

  • Dmitri E. KvasovEmail author
  • Marat S. Mukhametzhanov
  • Maria Chiara Nasso
  • Yaroslav D. Sergeyev
Conference paper
  • 36 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11974)

Abstract

Univariate box-constrained global optimization problems are considered, where the objective function is supposed to be Lipschitz continuous and multiextremal. It is assumed that its analytical representation is unknown (the function is given as a “black-box”) and even one its evaluation is a computationally expensive procedure. Geometric and information statistical frameworks for construction of global optimization algorithms are discussed. Several powerful acceleration techniques are described and a number of methods of both classes is constructed by mixing the introduced acceleration ideas. Numerical experiments executed on broad test classes taken from the literature show advantages of the presented techniques with respect to their direct competitors.

Keywords

Lipschitz global optimization Univariate black-box functions Geometric and information approaches Local tuning 

Notes

Acknowledgements

The work of M.S. Mukhametzhanov was supported by the INdAM-GNCS funding “Giovani Ricercatori 2018–2019”.

References

  1. 1.
    Barkalov, K.A., Gergel, V.P.: Parallel global optimization on GPU. J. Glob. Optim. 66(1), 3–20 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Calvin, J.M., Žilinskas, A.: One-dimensional global optimization for observations with noise. Comput. Math. Appl. 50(1–2), 157–169 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Daponte, P., Grimaldi, D., Molinaro, A., Sergeyev, Y.D.: Fast detection of the first zero-crossing in a measurement signal set. Measurement 19(1), 29–39 (1996)CrossRefGoogle Scholar
  4. 4.
    Floudas, C.A., Pardalos, P.M.: State of the Art in Global Optimization. Kluwer Academic Publishers, Dordrecht (1996)CrossRefGoogle Scholar
  5. 5.
    Gergel, V.P., Grishagin, V.A., Israfilov, R.A.: Local tuning in nested scheme of global optimization. Procedia Comput. Sci. 51, 865–874 (2015)CrossRefGoogle Scholar
  6. 6.
    Grishagin, V.A., Israfilov, R.A., Sergeyev, Y.D.: Comparative efficiency of dimensionality reduction schemes in global optimization. In: Proceedings of the 2nd International Conference on “Numerical Computations: Theory and Algorithms”, vol. 1776, p. 060011. AIP Publishing, New York (2016).  https://doi.org/10.1063/1.4965345
  7. 7.
    Grishagin, V.A., Israfilov, R.A., Sergeyev, Y.D.: Convergence conditions and numerical comparison of global optimization methods based on dimensionality reduction schemes. Appl. Math. Comput. 318, 270–280 (2018)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Hansen, P., Jaumard, B., Lu, S.H.: Global optimization of univariate Lipschitz functions: II. New algorithms and computational comparison. Math. Program. 55(1–3), 273–292 (1992)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kvasov, D.E., Pizzuti, C., Sergeyev, Y.D.: Local tuning and partition strategies for diagonal GO methods. Numer. Math. 94(1), 93–106 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kvasov, D.E., Sergeyev, Y.D.: Deterministic approaches for solving practical black-box global optimization problems. Adv. Eng. Softw. 80, 58–66 (2015)CrossRefGoogle Scholar
  11. 11.
    Lera, D., Sergeyev, Y.D.: An information global minimization algorithm using the local improvement technique. J. Glob. Optim. 48(1), 99–112 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lera, D., Sergeyev, Y.D.: Acceleration of univariate global optimization algorithms working with Lipschitz functions and Lipschitz first derivatives. SIAM J. Optim. 1(23), 508–529 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Modorskii, V.Y., Gaynutdinova, D.F., Gergel, V.P., Barkalov, K.A.: Optimization in design of scientific products for purposes of cavitation problems. In: Proceedings of the International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2015), vol. 1738, p. 400013. AIP Publishing, New York (2016).  https://doi.org/10.1063/1.4952201
  14. 14.
    Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased DISIMPL algorithm for expensive global optimization. J. Glob. Optim. 59(2–3), 545–567 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pintér, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications). Kluwer, Dordrecht (1996)CrossRefGoogle Scholar
  16. 16.
    Piyavskij, S.A.: An algorithm for finding the absolute extremum of a function. USSR Comput. Math. Math. Phys. 12(4), 57–67 (1972)CrossRefGoogle Scholar
  17. 17.
    Sergeyev, Y.D.: An information global optimization algorithm with local tuning. SIAM J. Optim. 5(4), 858–870 (1995)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sergeyev, Y.D.: A one-dimensional deterministic global minimization algorithm. Comput. Math. Math. Phys. 35(5), 705–717 (1995)MathSciNetGoogle Scholar
  19. 19.
    Sergeyev, Y.D.: Global one-dimensional optimization using smooth auxiliary functions. Math. Program. 81(1), 127–146 (1998)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sergeyev, Y.D., Daponte, P., Grimaldi, D., Molinaro, A.: Two methods for solving optimization problems arising in electronic measurements and electrical engineering. SIAM J. Optim. 10(1), 1–21 (1999)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sergeyev, Y.D., Grishagin, V.A.: A parallel method for finding the global minimum of univariate functions. J. Optimiz. Theor. Appl. 80(3), 513–536 (1994)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sergeyev, Y.D., Kvasov, D.E.: Deterministic Global Optimization: An Introduction to the Diagonal Approach. Springer, New York (2017)CrossRefGoogle Scholar
  23. 23.
    Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: On strong homogeneity of a class of global optimization algorithms working with infinite and infinitesimal scales. Commun. Nonlinear Sci. 59, 319–330 (2018) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget. Nat. Sci. Rep. 8, Article 453 (2018).  https://doi.org/10.1038/s41598-017-18940-4
  25. 25.
    Sergeyev, Y.D., Mukhametzhanov, M.S., Kvasov, D.E., Lera, D.: Derivative-free local tuning and local improvement techniques embedded in the univariate global optimization. J. Optimiz. Theor. Appl. 171(1), 319–330 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer, New York (2013)CrossRefGoogle Scholar
  27. 27.
    Strongin, R.G.: On the convergence of an algorithm for finding a global extremum. Eng. Cybern. 11, 549–555 (1973)MathSciNetGoogle Scholar
  28. 28.
    Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)CrossRefGoogle Scholar
  29. 29.
    Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization. Springer, New York (2008)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of CalabriaRendeItaly
  2. 2.Lobachevsky State UniversityNizhni NovgorodRussia

Personalised recommendations