Advertisement

Polynomial-Time Approximation Scheme for a Problem of Searching for the Largest Subset with the Constraint on Quadratic Variation

  • Vladimir KhandeevEmail author
Conference paper
  • 35 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11974)

Abstract

The paper is addressed to one strongly NP-hard problem of searching for the largest subset in the finite set of points in Euclidean space. A restriction is imposed on the searched subset: quadratic variation of its points with respect to the unknown centroid of this subset must not exceed a given value. We present the first polynomial-time approximation scheme for this problem.

Keywords

Euclidean space Largest subset Quadratic variation NP-hard problem Polynomial-time approximation scheme 

Notes

Acknowledgments

The study was supported by the Russian Foundation for Basic Research, projects 19-01-00308 and 18-31-00398, by the Russian Academy of Science (the Program of basic research), project 0314-2019-0015, and by the Russian Ministry of Science and Education under the 5-100 Excellence Programme.

References

  1. 1.
    Aggarwal, C.C.: Data Mining: The Textbook. Springer, Heidelberg (2015)zbMATHGoogle Scholar
  2. 2.
    Osborne, J.W.: Best Practices in Data Cleaning: A Complete Guide to Everything You Need to Do before and after Collecting Your Data. SAGE Publication, Los Angeles (2013)CrossRefGoogle Scholar
  3. 3.
    Greco, L., Farcomeni, A.: Robust Methods for Data Reduction. Chapman and Hall/CRC, London/Boca Raton (2015)Google Scholar
  4. 4.
    James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning. Springer, New York (2013)CrossRefGoogle Scholar
  5. 5.
    Edwards, A.W.F., Cavalli-Sforza, L.L.: A method for cluster analysis. Biometrics 21, 362–375 (1965)CrossRefGoogle Scholar
  6. 6.
    Ageev, A.A., Kel’manov, A.V., Pyatkin, A.V., Khamidullin, S.A., Shenmaier, V.V.: Approximation polynomial algorithm for the data editing and data cleaning problem. Pattern Recogn. Image Anal. 17(3), 365–370 (2017)CrossRefGoogle Scholar
  7. 7.
    Kel’manov, A., Khamidullin, S., Khandeev, V., Pyatkin, A.: Exact algorithms for two quadratic euclidean problems of searching for the largest subset and longest subsequence. In: Battiti, R., Brunato, M., Kotsireas, I., Pardalos, P.M. (eds.) LION 12 2018. LNCS, vol. 11353, pp. 326–336. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-05348-2_28CrossRefGoogle Scholar
  8. 8.
    Kel’manov, A., Pyatkin, A., Khamidullin, S., Khandeev, V., Shamardin, Y., Shenmaier, V.: An approximation polynomial algorithm for a problem of searching for the longest subsequence in a finite sequence of points in euclidean space. Commun. Comput. Inf. Sci. 871, 120–130 (2018)Google Scholar
  9. 9.
    Aggarwal, H., Imai, N., Katoh, N., Suri, S.: Finding k points with minimum diameter and related problems. J. Algorithms 12(1), 38–56 (1991)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kel’manov, A.V., Pyatkin, A.V.: NP-completeness of some problems of choosing a vector subset. J. Appl. Ind. Math. 5(3), 352–357 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Shenmaier, V.V.: Solving some vector subset problems by voronoi diagrams. J. Appl. Ind. Math. 10(4), 560–566 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kel’manov, A.V., Romanchenko, S.M.: An approximation algorithm for solving a problem of search for a vector subset. J. Appl. Ind. Math. 6(1), 90–96 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Shenmaier, V.V.: An approximation scheme for a problem of search for a vector subset. J. Appl. Ind. Math. 6(3), 381–386 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kel’manov, A., Khandeev, V., Panasenko, A.: Randomized algorithms for some clustering problems. In: Eremeev, A., Khachay, M., Kochetov, Y., Pardalos, P. (eds.) OPTA 2018. CCIS, vol. 871, pp. 109–119. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93800-4_9CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations