Infinite Games on Finite Graphs Using Grossone

  • Louis D’AlottoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11974)


In his seminal work, Robert McNaughton (see [1] and [7]) developed a model of infinite games played on finite graphs. This paper presents a new model of infinite games played on finite graphs using the Grossone paradigm. The new Grossone model provides certain advantages such as allowing for draws, which are common in board games, and a more accurate and decisive method for determining the winner when a game is played to infinite duration.


Infinite games Grossone Finite automata 


  1. 1.
    McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Logic 65, 149–184 (1993)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Caldarola, F.: The exact measures of the Sierpiński d-dimensional tetrahedron in connection with a Diophantine nonlinear system. Commun. Nonlinear Sci. Numer. Simul. 63, 228–238 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    De Leone, R., Fasano, G., Sergeyev, Ya.D.: Planar methods and grossone for the Conjugate Gradient breakdown in nonlinear programming. Comput. Optim. Appl. 71(1), 73–93 (2018)Google Scholar
  4. 4.
    De Leone, R.: Nonlinear programming and grossone: quadratic programming and the role of constraint qualifications. Appl. Math. Comput. 318, 290–297 (2018)zbMATHGoogle Scholar
  5. 5.
    D’Alotto, L.: A classification of one-dimensional cellular automata using infinite computations. Appl. Math. Comput. 255, 15–24 (2015)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Fiaschi, L., Cococcioni, M.: Numerical asymptotic results in Game Theory using Sergeyev’s Infinity Computing. Int. J. Unconv. Comput. 14(1), 1–25 (2018)Google Scholar
  7. 7.
    Khoussainov, B., Nerode, A.: Automata Theory and Its Applications. Birkhauser, Basel (2001)CrossRefGoogle Scholar
  8. 8.
    Iudin, D.I., Sergeyev, Ya.D., Hayakawa, M.: Infinity computations in cellular automaton forest-fire model. Commun. Nonlinear Sci. Numer. Simul. 20(3), 861–870 (2015)Google Scholar
  9. 9.
    Lolli, G.: Infinitesimals and infinites in the history of mathematics: a brief survey. Appl. Math. Comput. 218(16), 7979–7988 (2012) MathSciNetzbMATHGoogle Scholar
  10. 10.
    Lolli, G.: Metamathematical investigations on the theory of Grossone. Appl. Math. Comput. 255, 3–14 (2015)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Margenstern, M.: Using Grossone to count the number of elements of infinite sets and the connection with bijections. p-Adic Numbers Ultrametric Anal. Appl. 3(3), 196–204 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Montagna, F., Simi, G., Sorbi, A.: Taking the Pirahá seriously. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 52–69 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Rizza, D.: Numerical methods for infinite decision-making processes. Int. J. Unconv. Comput. 14(2), 139–158 (2019)Google Scholar
  14. 14.
    Rizza, D.: How to make an infinite decision. Bull. Symb. Logic 24(2), 227 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sergeyev, Y.D.: Arithmetic of Infinity. Edizioni Orizzonti Meridionali, Cosenza (2003)zbMATHGoogle Scholar
  16. 16.
    Sergeyev, Y.D.: A new applied approach for executing computations with infinite and infinitesimal quantities. Informatica 19(4), 567–596 (2008)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Cococcioni, M., Pappalardo, M., Sergeyev, Y.D.: Lexicographic multiobjective linear programming using grossone methodology: theory and algorithm. Appl. Math. Comput. 318, 298–311 (2018)zbMATHGoogle Scholar
  18. 18.
    Sergeyev, Y.D.: Computations with grossone-based infinities. In: Calude, C.S., Dinneen, M.J. (eds.) UCNC 2015. LNCS, vol. 9252, pp. 89–106. Springer, Cham (2015). Scholar
  19. 19.
    Sergeyev, Ya.D.: The Olympic medals ranks, lexicographic ordering and numerical infinities. Math. Intelligencer 37(2), 4–8 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sergeyev, Ya.D.: Numerical infinities and infinitesimals: methodology, applications, and repercussions on two Hilbert problems. EMS Surv. Math. Sci. 4(2), 219–320 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sergeyev, Ya.D., Garro, A.: Observability of Turing Machines: a refinement of the theory of computation. Informatica 21(3), 425–454 (2010)Google Scholar
  22. 22.
    Zhigljavsky, A.: Computing sums of conditionally convergent and divergent series using the concept of grossone. Appl. Math. Comput. 218, 8064–8076 (2012)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.York CollegeThe City University of New YorkJamaica, QueensUSA
  2. 2.The Graduate CenterThe City University of New YorkNew York CityUSA

Personalised recommendations