Advertisement

Numerical Strategies for Solving Multiparameter Spectral Problems

  • Pierluigi AmodioEmail author
  • Giuseppina Settanni
Conference paper
  • 11 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11974)

Abstract

We focus on the solution of multiparameter spectral problems, and in particular on some strategies to compute coarse approximations of selected eigenparameters depending on the number of oscillations of the associated eigenfunctions. Since the computation of the eigenparameters is crucial in codes for multiparameter problems based on finite differences, we herein present two strategies. The first one is an iterative algorithm computing solutions as limit of a set of decoupled problems (much easier to solve). The second one solves problems depending on a parameter \(\sigma \in [0,1]\), that give back the original problem only when \(\sigma =1\). We compare the strategies by using well known test problems with two and three parameters.

Keywords

Multiparameter spectral problems High order methods Finite difference schemes 

References

  1. 1.
    Abramov, A.A., Ul’yanova, V.I.: A method for solving selfadjoint multiparameter spectral problems for weakly coupled sets of ordinary differential equations. Comput. Math. Math. Phys. 37(5), 552–557 (1997)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Amodio, P., Levitina, T., Settanni, G., Weinmüller, E.B.: On the calculation of the finite Hankel transform eigenfunctions. J. Appl. Math. Comput. 43(1–2), 151–173 (2013).  https://doi.org/10.1007/s12190-013-0657-1MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Amodio, P., Levitina, T., Settanni, G., Weinmüller, E.B.: Numerical simulation of the whispering gallery modes in prolate spheroids. Comput. Phys. Commun. 185(4), 1200–1206 (2014).  https://doi.org/10.1016/j.cpc.2013.12.012MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Amodio, P., Levitina, T., Settanni, G., Weinmüller, E.B.: Whispering gallery modes in oblate spheroidal cavities: calculations with a variable stepsize. In: Proceedings of the ICNAAM-2014, AIP Conference Proceedings, vol. 1648, p. 150019 (2015).  https://doi.org/10.1063/1.4912449
  5. 5.
    Amodio, P., Settanni, G.: A matrix method for the solution of Sturm-Liouville problems. JNAIAM. J. Numer. Anal. Ind. Appl. Math. 6(1–2), 1–13 (2011)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Amodio, P., Settanni, G.: A stepsize variation strategy for the solution of regular Sturm-Liouville problems. In: Simos, T.E., Psihoyios, G., Tsitouras, C., Anastassi, Z. (eds.) Numerical Analysis and Applied Mathematics ICNAAM 2011, AIP Conference Proceedings, vol. 1389, pp. 1335–1338 (2011).  https://doi.org/10.1063/1.3637866
  7. 7.
    Amodio, P., Settanni, G.: A finite differences MATLAB code for the numerical solution of second order singular perturbation problems. J. Comput. Appl. Math. 236(16), 3869–3879 (2012).  https://doi.org/10.1016/j.cam.2012.04.011MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Amodio, P., Settanni, G.: Variable-step finite difference schemes for the solution of Sturm-Liouville problems. Commun. Nonlinear Sci. Numer. Simulat. 20(3), 641–649 (2015).  https://doi.org/10.1016/j.cnsns.2014.05.032MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Arscott, F.M.: Two-parameter eigenvalue problems in differential equations. Proc. London Math. Soc. 14(3), 459–470 (1964).  https://doi.org/10.1112/plms/s3-14.3.459MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Atkinson, F.V.: Multiparameter Eigenvalue Problems. Matrices and Compact Operators, vol. 1. Academic Press, New York (1972). Mathematics in Science and Engineering, vol. 82zbMATHGoogle Scholar
  11. 11.
    Bailey, P.B.: The automatic solution of two-parameter Sturm-Liouville eigenvalue problems in ordinary differential equations. Appl. Math. Comput. 8(4), 251–259 (1981).  https://doi.org/10.1016/0096-3003(81)90021-7MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Faierman, M.: On the distribution of the eigenvalues of a two-parameter system of ordinary differential equations of the second order. SIAM J. Math. Anal. 8(5), 854–870 (1977).  https://doi.org/10.1137/0508065MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Faierman, M.: Distribution of eigenvalues of a two-parameter system of differential equations. Trans. Amer. Math. Soc. 247, 86–145 (1979).  https://doi.org/10.1090/S0002-9947-1979-0517686-7MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gheorghiu, C.I., Hochstenbach, M.E., Plestenjak, B., Rommes, J.: Spectral collocation solutions to multiparameter Mathieu’s system. Appl. Math. Comput. 218(24), 11990–12000 (2012).  https://doi.org/10.1016/j.amc.2012.05.068MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Levitina, T.V.: A numerical solution to some three-parameter spectral problems. Comput. Math. Math. Phys. 39(11), 1715–1729 (1999)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Plestenjak, B., Gheorghiu, C.I., Hochstenbach, M.E.: Spectral collocation for multiparameter eigenvalue problems arising from separable boundary value problems. J. Comput. Phys. 298, 585–601 (2015).  https://doi.org/10.1016/j.jcp.2015.06.015MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sleeman, B.D.: Multi-parameter eigenvalue problems in ordinary differential equations. Bul. Inst. Politehn. Iaşi (N.S.) 17(21)(3–4, sect. I), 51–60 (1971)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Sleeman, B.D.: The two parameter Sturm-Liouville problem for ordinary differential equations. Proc. Roy. Soc. Edinburgh, Sect. A 69(2), 139–148 (1971)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Turyn, L.: Sturm-Liouville problems with several parameters. J. Differ. Equ. 38(2), 239–259 (1980).  https://doi.org/10.1016/0022-0396(80)90007-8MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità degli Studi di Bari “Aldo Moro”BariItaly

Personalised recommendations