Methodology for Interval-Valued Matrix Games with 2-Tuple Fuzzy Linguistic Information

  • Tanya Malhotra
  • Anjana GuptaEmail author
  • Anjali Singh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11974)


In this paper, we consider a non-cooperative 2-player zero-sum interval-valued 2-tuple fuzzy linguistic (IVTFL) matrix game and develop a methodology to evaluate its saddle point and optimal interval-valued linguistic value of the game. In this direction, we have constructed an auxiliary pair of interval-valued linguistic linear programming (IVLLP) problem that is further transformed into conventional interval linear programming (ILP) problem to obtain optimal strategy sets of both players as the region that is not only completely feasible but also totally optimal. The proposed method is illustrated via a hypothetical example to show its applicability in the real world. To validate the suggested solution scheme, the transformed ILP problems are solved using best-worst case (BWC) approach, enhanced-interval linear programming (EILP) method and linguistic linear programming (LLP) technique of solving interval linguistic matrix game problems and lastly the obtained results are compared.


2-tuple fuzzy linguistic model Interval-valued 2-tuple fuzzy linguistic model Interval linear programming Interval-valued linguistic linear programming Matrix game problem 



This work was financially supported by Delhi Technological University Ref. No. DTU/IRD/619/2019/2107 and Ref. No. DTU/Maths/387/2019-20/2108.


  1. 1.
    Herrera, F., Martinez, L.: A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 8(6), 746–752 (2000)CrossRefGoogle Scholar
  2. 2.
    Singh, A., Gupta, A., Mehra, A.: Matrix games with 2-tuple linguistic information. Ann. Oper. Res. (2018).
  3. 3.
    Singh, A., Gupta, A.: Matrix games with interval-valued 2-tuple linguistic information. Games 9(3), 62 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Singh, A., Gupta, A., Mehra, A.: An AHP-PROMETHEE II method for 2-tuple linguistic multicriteria group decision making. In: 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), pp. 1–6. IEEE (2015).
  5. 5.
    Xu, Z.: Deviation measures of linguistic preference relations in group decision making. Int. Omega 33(3), 249–254 (2005)CrossRefGoogle Scholar
  6. 6.
    Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior, 2nd edn. Princeton University Press, Princeton (1947)zbMATHGoogle Scholar
  7. 7.
    Zhang, H.: The multiattribute group decision making method based on aggregation operators with interval-valued 2-tuple linguistic information. Math. Comput. Model. 56(1–2), 27–35 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Moore, R.E.: Interval Analysis, vol. 4. Prentice-Hall, Englewood Cliffs (1966)zbMATHGoogle Scholar
  9. 9.
    Moore, R.E.: Methods and Applications of Interval Analysis. Society for Industrial and Applied Mathematics, Philadelphia (1979)CrossRefGoogle Scholar
  10. 10.
    Sengupta, A., Pal, T.K.: A-index for ordering interval numbers. In: Indian Science Congress, pp. 3–8 (1997)Google Scholar
  11. 11.
    Ishibuchi, H., Tanaka, H.: Multiobjective programming in optimization of the interval objective function. Eur. J. Oper. Res. 48(2), 219–225 (1990)CrossRefGoogle Scholar
  12. 12.
    Wu, H.C.: On interval-valued nonlinear programming problems. J. Math. Anal. Appl. 338(1), 299–316 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dubois, D., Prade, H.: Ranking fuzzy numbers in the setting of possibility theory. Inf. Sci. 30(3), 183–224 (1983)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Chanas, S., Kuchta, D.: Multiobjective programming in optimization of interval objective functions - a generalized approach. Eur. J. Optional Res. 94(3), 594–598 (1996)CrossRefGoogle Scholar
  15. 15.
    Bodenhofer, U.: Orderings of fuzzy sets based on fuzzy orderings part I: the basic approach. Mathw. Soft Comput. 15(2), 201–218 (2008)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Bodenhofer, U.: Orderings of fuzzy sets based on fuzzy orderings part II: generalizations. Mathw. Soft Comput. 15(3), 219–249 (2008)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Sakawa, M., Nishizaki, I.: Max-min solutions for fuzzy multiobjective matrix games. Fuzzy Sets Syst. 67(1), 53–69 (1994)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Campos, L.: Fuzzy linear programming models to solve fuzzy matrix games. Fuzzy Sets Syst. 32(3), 275–289 (1989)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Bector, C.R., Chandra, S.: Fuzzy Mathematical Programming and Fuzzy Matrix Games, vol. 169. Springer, Berlin (2005). Scholar
  20. 20.
    Allahdadi, M., Nehi, H.M.: The optimal solution set of the interval linear programming problems. Optim. Lett. 7(8), 1893–1911 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Avşar, Z.M., Baykal-Gürsoy, M.: A note on two-person zero-sum communicating stochastic games. Oper. Res. Lett. 34(4), 412–420 (2006)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kurano, M., Yasuda, M., Nakagami, J.I., Yoshida, Y.: An interval matrix game and its extensions to fuzzy and stochastic games (2002). Accessed 5 June 2018
  23. 23.
    Arfi, B.: Linguistic fuzzy-logic game theory. J. Confl. Resolut. 50(1), 28–57 (2006)CrossRefGoogle Scholar
  24. 24.
    Arfi, B.: Linguistic fuzzy-logic social game of cooperation. Rat. Soc. 18(4), 471–537 (2006)CrossRefGoogle Scholar
  25. 25.
    Zhou, F., Huang, G.H., Chen, G.X., Guo, H.C.: Enhanced-interval linear programming. Eur. J. Oper. Res. 199(2), 323–333 (2009)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Barron, E.N.: Game Theory: An Introduction, vol. 2. Wiley, Hoboken (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Delhi Technological UniversityDelhiIndia
  2. 2.Mahatma Gandhi Institute of TechnologyJNTUHHyderabadIndia

Personalised recommendations