Advertisement

Physiology and Cardioprotection of the Epicardial Adipose Tissue

  • Gianluca IacobellisEmail author
Chapter
  • 27 Downloads
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

Epicardial adipose tissue (EAT) is a peculiar visceral fat depot with both protective and detrimental properties. The physiological role of EAT within the heart is complex and not completely understood. EAT functions can be distinguished in (1) nutritional, (2) metabolic, (3) thermogenic, (4) regulatory, and (5) mechanical. Under normal physiological EAT serves as a buffer, absorbing fatty acids and protecting the heart against high fatty acids levels and as pad protecting abnormal curvature of the coronary arteries. EAT is enriched in genes coding for cardioprotective adipokines such as adiponectin and adrenomedullin, both with potential anti-inflammatory and anti-atherogenic properties. EAT could also function as local energy source at times of high demand, channeling fatty acids to the myocardium and as brown fat to defend the myocardium against hypothermia. EAT expresses genes and secretes cytokines actively involved in the thermogenesis and regulation of lipid and glucose metabolism of the adjacent myocardium. EAT may adapt itself to different metabolic circumstances and function as brown-like or beige fat depot as needed.

Keywords

Epicardial fat Epicardial adipose tissue Epicardial fat physiology Brown adipose tissue Adiponectin Adrenomedullin 

References

  1. 1.
    Marchington JM, Pond CM. Site-specific properties of pericardial and epicardial adipose tissue: the effects of insulin and high-fat feeding on lipogenesis and the incorporation of fatty acids in vitro. Int J Obes. 1990;14:1013–22.PubMedGoogle Scholar
  2. 2.
    Vural B, Atalar F, Ciftci C, Demirkan A, Susleyici-Duman B, Gunay D. Presence of fatty-acid-binding protein 4 expression in human epicardial adipose tissue in metabolic syndrome. Cardiovasc Pathol. 2008;17:392–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Pezeshkian M, Mahtabipour MR. Epicardial and subcutaneous adipose tissue fatty acids profiles in diabetic and non-diabetic patients candidate for coronary artery bypass graft. Bioimpacts. 2013;3:83–9.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Marchington JM, Mattacks CA, Pond CM. Adipose tissue in the mammalian heart and pericardium; structure, foetal development and biochemical properties. Comp Biochem Physiol. 1989;94B:225–32.Google Scholar
  5. 5.
    Iacobellis G, Bianco AC. Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol Metab. 2011;22:450–7.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med. 2005;2:536–43.PubMedCrossRefGoogle Scholar
  7. 7.
    Judkin JS, Eringa E, Stehouwer CD. “Vasocrine signalling” from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet. 2005;365:1817–20.CrossRefGoogle Scholar
  8. 8.
    Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108:2460–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol. 2004;24:29–33. Review.PubMedCrossRefGoogle Scholar
  10. 10.
    Yatagai T, Nagasaka S, Taniguchi A, Fukushima M, Nakamura T, Kuroe A, et al. Hypoadiponectinemia is associated with visceral fat accumulation and insulin resistance in Japanese men with type 2 diabetes mellitus. Metabolism. 2003;52:1274–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Staiger H, Tschritter O, Machann J, Thamer C, Fritsche A, Maerker E, et al. Relationship of serum adiponectin and leptin concentrations with body fat distribution in humans. Obes Res. 2003;11:368–72.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Iacobellis G, Barbaro G. The double role of epicardial adipose tissue as pro- and anti-inflammatory organ. Horm Metab Res. 2008;40:442–5.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Iacobellis G, Pistilli D, Gucciardo M, Leonetti F, Miraldi F, Brancaccio G, et al. Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with CAD. Cytokine. 2005;29:251–5.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Iacobellis G, di Gioia CR, Cotesta D, Petramala L, Travaglini C, De Santis V, et al. Epicardial adipose tissue adiponectin expression is related to intracoronary adiponectin levels. Horm Metab Res. 2009;41:227–31.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Iacobellis G, Cotesta D, Petramala L, De Santis V, Vitale D, Tritapepe L, Letizia C. Intracoronary adiponectin levels rapidly and significantly increase after coronary revascularization. Int J Cardiol. 2010;144:160–3.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ishimitsu T, Ono H, Minami J, Matsuoka H. Pathophysiologic and therapeutic implications of adrenomedullin in cardiovascular disorders. Pharmacol Ther. 2006;111:909–27.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Bunton DC, Petrie MC, Hillier C, Johnston F, McMurray JJV. The clinical relevance of adrenomedullin: a promising profile? Pharmacol Ther. 2004;103:179–201.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Yasu T, Nishikimi T, Kobayashi N, Ikeda N, Ueba H, Nakamura T, et al. Up-regulated synthesis of mature-type adrenomedullin in coronary circulation immediately after reperfusion in patients with anterior acute myocardial infarction. Regul Pept. 2005;129(1–3):161–6.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kobayashi K, Kitamura K, Hirayama N, Date H, Kashiwagi T, Ikushima I, et al. Increased plasma adrenomedullin in acute myocardial infarction. Am Heart J. 1996;131:676–80.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Hamid SA, Baxter GF. A critical cytoprotective role of endogenous adrenomedullin in acute myocardial infarction. J Mol Cell Cardiol. 2006;41:360–3.PubMedCrossRefGoogle Scholar
  21. 21.
    Hojo Y, Uichi I, Katsuki T, Shimada K. Decreased adrenomedullin production in the coronary circulation of patients with coronary artery disease. Heart. 2000;84(1):88.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Silaghi A, Achard V, Paulmyer-Lacroix O, Scridon T, Tassistro V, Duncea I, et al. Expression of adrenomedullin in human epicardial adipose tissue: role of coronary status. Am J Physiol Endocrinol Metab. 2007;293:E1443–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Fosshaug LE, Dahl CP, Risnes I, Bohov P, Berge RK, Nymo S, et al. Altered levels of fatty acids and inflammatory and metabolic mediators in epicardial adipose tissue in patients with systolic heart failure. J Card Fail. 2015;21:916–23.PubMedCrossRefGoogle Scholar
  24. 24.
    Iacobellis G, di Goia CR, Di Vito M, Petramala L, Cotesta D, De Santis V, et al. Epicardial adipose tissue and intracoronary adrenomedullin levels in coronary artery disease. Horm Metab Res. 2009;41:855–60.PubMedCrossRefGoogle Scholar
  25. 25.
    Fernández-Trasancos Á, Agra RM, García-Acuña JM, Fernández ÁL, González-Juanatey JR, Eiras S. Omentin treatment of epicardial fat improves its anti-inflammatory activity and paracrine benefit on smooth muscle cells. Obesity (Silver Spring). 2017;25:1042–9.CrossRefGoogle Scholar
  26. 26.
    Du Y, Ji Q, Cai L, Huang F, Lai Y, Liu Y, et al. Association between omentin-1 expression in human epicardial adipose tissue and coronary atherosclerosis. Cardiovasc Diabetol. 2016;15:90.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Harada K, Shibata R, Ouchi N, Tokuda Y, Funakubo H, Suzuki M, et al. Increased expression of the adipocytokine omentin in the epicardial adipose tissue of coronary artery disease patients. Atherosclerosis. 2016;251:299–304.PubMedCrossRefGoogle Scholar
  28. 28.
    Matloch Z, Kratochvílová H, Cinkajzlová A, Lipš M, Kopecký P, Pořízka M, et al. Changes in omentin levels and its mRNA expression in epicardial adipose tissue in patients undergoing elective cardiac surgery: the influence of type 2 diabetes and coronary heart disease. Physiol Res. 2018;67:881–90.PubMedCrossRefGoogle Scholar
  29. 29.
    Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293:E444–52.PubMedCrossRefGoogle Scholar
  30. 30.
    Heaton JM. The distribution of brown adipose tissue in the human. J Anat. 1972;112:35–9.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Iacobellis G, Di Gioia C, Petramala L, Chiappetta C, Serra V, Zinnamosca L, et al. Brown fat expresses adiponectin in humans. Int J Endocrinol. 2013;2013:126751.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sacks HS, Fain JN. Human epicardial adipose tissue: a review. Am Heart J. 2007;153:907–17.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Sacks HS, Fain JN, Holman B, Cheema P, Chary A, Parks F. Uncoupling protein-1 and related mRNAs in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. J Clin Endocrinol Metab. 2009;94:3611–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Sacks HS, Fain JN, Bahouth SW, Ojha S, Frontini A, Budge H, et al. Human epicardial fat exhibits beige features. J Clin Endocrinol Metab. 2013;98:E1448–55.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Ojha S, Fainberg HP, Wilson V, Pelella G, Castellanos M, May ST, et al. Gene pathway development in human epicardial adipose tissue during early life. JCI Insight. 2016;1:e87460.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Fainberg HP, Birtwistle M, Alagal R, Alhaddad A, Pope M, Davies G, et al. Transcriptional analysis of adipose tissue during development reveals depot-specific responsiveness to maternal dietary supplementation. Sci Rep. 2018;8:9628.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    McAninch EA, Fonseca TL, Poggioli R, Panos AL, Salerno TA, Deng Y, et al. Epicardial adipose tissue has a unique transcriptome modified in severe coronary artery disease. Obesity. 2015;23:1267–78.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Singh SP, McClung JA, Thompson E, Glick Y, Greenberg M, Acosta-Baez G, et al. Cardioprotective effect of heme oxygenase-1-PGC-1α signaling in epicardial fat attenuates cardiovascular risk in humans as in obese mice. Obesity (Silver Spring). 2019;27:1634–43.CrossRefGoogle Scholar
  40. 40.
    Svensson PA, Jernas M, Sjoholm K, Hoffmann JM, Nilsson BE, Hansson M, et al. Gene expression in human brown adipose tissue. Int J Mol Med. 2011;27:227–32.PubMedCrossRefGoogle Scholar
  41. 41.
    Chechi K, Vijay J, Voisine P, Mathieu P, Bossé Y, Tchernof A, et al. UCP1 expression-associated gene signatures of human epicardial adipose tissue. JCI Insight. 2019;4:e123618.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Regan SE, Broad M, Byford AM, Lankford AR, Cerniway RJ, Mayo MW, et al. A1 adenosine receptor overexpression attenuates ischemia-reperfusion-induced apoptosis and caspase 3 activity. Am J Physiol Heart Circ Physiol. 2003;284:H859–66.PubMedCrossRefGoogle Scholar
  43. 43.
    Prati F, Arbustini E, Labellarte A, Sommariva L, Pawlowski T, Manzoli A, et al. Eccentric atherosclerotic plaques with positive remodelling have a pericardial distribution: a permissive role of epicardial fat? A three-dimensional intravascular ultrasound study of left anterior descending artery lesions. Eur Heart J. 2003;24:329–36.PubMedCrossRefGoogle Scholar
  44. 44.
    Fei J, Cook C, Blough E, Santanam N. Age and sex mediated changes in epicardial fat adipokines. Atherosclerosis. 2010;212:488–94.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kocher C, Christiansen M, Martin S, Adams C, Wehner P, Gress T, Santanam N. Sexual dimorphism in obesity-related genes in the epicardial fat during aging. J Physiol Biochem. 2017;73:215–24.PubMedCrossRefGoogle Scholar
  46. 46.
    Richards EM, McElhaney E, Zeringue K, Joseph S, Keller-Wood M. Transcriptomic evidence that cortisol alters perinatal epicardial adipose tissue maturation. Am J Physiol Endocrinol Metab. 2019;317:E573–85.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Division of Endocrinology, Diabetes and Metabolism, Department of MedicineUniversity of Miami, Miller School of MedicineMiamiUSA

Personalised recommendations