Targeting the Epicardial Adipose Tissue

  • Gianluca IacobellisEmail author
Part of the Contemporary Cardiology book series (CONCARD)


Epicardial fat (EAT) is the visceral fat depot of the heart. Given its rapid metabolism, organ fat specificity, and simple objective measurability, epicardial fat can serve as a target for pharmaceutical agents targeting the adipose tissue. EAT has shown to significantly respond to thiazolidinediones (TZD), glucagon-like peptide-1 receptor (GLP-1R) agonists, sodium-glucose cotransporter 2 inhibitors (SGLT2i), dipeptidyl peptidase-4 inhibitors (DPP4i), and statins. EAT may represent a measurable risk factor and modifiable therapeutic target. Targeted pharmaceutical interventions may allow EAT to resume its physiological role. A drug-induced browning effect on EAT suggests the development of pharmacological strategies to increase energy consumption. The potential of modulating the EAT transcriptome with targeted pharmacological agents can open new avenues in the pharmacotherapy of cardiometabolic diseases.


Epicardial fat Epicardial adipose tissue: Pharmaceutical target Thiazolidinediones Glucagon-like peptide-1 receptor agonists Sodium-glucose cotransporter 2 inhibitors Dipeptidyl peptidase-4 inhibitors Statins 


  1. 1.
    Iacobellis G, Assael F, Ribaudo MC, Zappaterreno A, Alessi G, Di Mario U, Leonetti F. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res. 2003;11:304–10.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Iacobellis G, Ribaudo MC, Assael F, Vecci E, Tiberti C, Zappaterreno A, et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab. 2003;388:5163–8.CrossRefGoogle Scholar
  3. 3.
    Iacobellis G, Willens HJ. Echocardiographic epicardial fat: a review of research and clinical applications. J Am Soc Echocardiogr. 2009;22:1311–9.CrossRefGoogle Scholar
  4. 4.
    Malavazos AE, Di Leo G, Secchi F, Lupo EN, Dogliotti G, Coman C, et al. Relation of echocardiographic epicardial fat thickness and myocardial fat. Am J Cardiol. 2010;105:1831–5.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Iacobellis G, Mohseni M, Bianco S, Banga PK. Liraglutide causes large and rapid epicardial fat reduction. Obesity. 2017;25:311–6.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Morano S, Romagnoli E, Filardi T, Nieddu L, Mandosi E, Fallarino M, et al. Short-term effects of glucagon-like peptide 1 (GLP-1) receptor agonists on fat distribution in patients with type 2 diabetes mellitus: an ultrasonography study. Acta Diabetol. 2015;52:727–32.CrossRefGoogle Scholar
  7. 7.
    Lima-Martínez MM, Paoli M, Rodney M, Balladares N, Contreras M, D’Marco L, Iacobellis G. Effect of sitagliptin on epicardial fat thickness in subjects with type 2 diabetes and obesity: a pilot study. Endocrine. 2016;51:448–55.CrossRefGoogle Scholar
  8. 8.
    Sato T, Aizawa Y, Yuasa S, Kishi S, Fuse K, Fujita S, Ikeda Y, Kitazawa H, Takahashi M, Sato M, Okabe M. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc Diabetol. 2018;17:6.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yagi S, Hirata Y, Ise T, Kusunose K, Yamada H, Fukuda D, et al. Canagliflozin reduces epicardial fat in patients with type 2 diabetes mellitus. Diabetol Metab Syndr. 2017;9:78.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fukuda T, Bouchi R, Terashima M, Sasahara Y, Asakawa M, Takeuchi T, et al. Ipragliflozin reduces epicardial fat accumulation in non-obese type 2 diabetic patients with visceral obesity: a pilot study. Diabetes Ther. 2017;8:851–61.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bouchi R, Terashima M, Sasahara Y, Asakawa M, Fukuda T, Takeuchi T, et al. Luseogliflozin reduces epicardial fat accumulation in patients with type 2 diabetes: a pilot study. Cardiovasc Diabetol. 2017;16:32.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nagai H, Ito H, Iwakura K. Pioglitazone treatment reduces epicardial fat in patients with type 2 diabetes mellitus and improves left ventricular diastolic function. (Abstract 710). Circulation. 2008;118:S604.Google Scholar
  13. 13.
    Elisha B, Azar M, Taleb N, Bernard S, Iacobellis G, Rabasa-Lhoret R. Body composition and epicardial fat in type 2 diabetes patients following insulin detemir versus insulin glargine initiation. Horm Metab Res. 2016;48:42–7.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Park JH, Park YS, Kim YJ, Lee IS, Kim JH, Lee JH, et al. Effects of statins on the epicardial fat thickness in patients with coronary artery stenosis underwent percutaneous coronary intervention: comparison of atorvastatin with simvastatin/ezetimibe. J Cardiovasc Ultrasound. 2010;18:121–6.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Alexopoulos N, Melek BH, Arepalli CD, Hartlage GR, Chen Z, Kim S, et al. Effect of intensive versus moderate lipid-lowering therapy on epicardial adipose tissue in hyperlipidemic post-menopausal women: a substudy of the BELLES trial (beyond endorsed lipid lowering with EBT scanning). J Am Coll Cardiol. 2013;61:1956–61.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Raggi P, Gadiyaram V, Zhang C, Chen Z, Lopaschuk G, Stillman AE. Statins reduce epicardial adipose tissue attenuation independent of lipid lowering: a potential pleiotropic effect. J Am Heart Assoc. 2019;8:e01310.CrossRefGoogle Scholar
  17. 17.
    Ferrante E, Malavazos AE, Giavoli C, Ermetici F, Coman C, Bergamaschi S, et al. Epicardial fat thickness significantly decreases after short-term growth hormone (GH) replacement therapy in adults with GH deficiency. Nutr Metab Cardiovasc Dis. 2013;23:459–65.CrossRefGoogle Scholar
  18. 18.
    Francomano D, Bruzziches R, Barbaro G, Lenzi A, Aversa A. Effects of testosterone undecanoate replacement and withdrawal on cardio-metabolic, hormonal and body composition outcomes in severely obese hypogonadal men: a pilot study. J Endocrinol Investig. 2014;37:401–11.CrossRefGoogle Scholar
  19. 19.
    Fiore D, Gianfrilli D, Giannetta E, Galea N, Panio G, di Dato C, et al. PDE5 inhibition ameliorates visceral adiposity targeting the miR-22/SIRT1 pathway: evidence from the CECSID trial. J Clin Endocrinol Metab. 2016;101:1525–34.CrossRefGoogle Scholar
  20. 20.
    Iacobellis G, Singh N, Wharton S, Sharma AM. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity. 2008;16:1693–7.CrossRefGoogle Scholar
  21. 21.
    Fu CP, Sheu WH, Lee IT, Tsai IC, Lee WJ, Liang KW, et al. Effects of weight loss on epicardial adipose tissue thickness and its relationship between serum soluble CD40 ligand levels in obese men. Clin Chim Acta. 2013;421:98–103.CrossRefGoogle Scholar
  22. 22.
    Snel M, Jonker JT, Hammer S, Kerpershoek G, Lamb HJ, Meinders AE, et al. Long-term beneficial effect of a 16-week very low calorie diet on pericardial fat in obese type 2 diabetes mellitus patients. Obesity (Silver Spring). 2012;20:1572–6.CrossRefGoogle Scholar
  23. 23.
    Dixon JB, Zimmet P, Alberti KG, Rubino F, International Diabetes Federation Taskforce on Epidemiology and Prevention. Bariatric surgery: an IDF statement for obese type 2 diabetes. Diabet Med. 2011;28:628–42.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ashrafian H, le Roux CW, Darzi A, Athanasiou T. Effects of bariatric surgery on cardiovascular function. Circulation. 2008;118:2091–102.CrossRefGoogle Scholar
  25. 25.
    De La Cruz-Munoz N, Messiah SE, Lopez-Mitnik G, Arheart KL, Lipshultz SE, Livingstone A. Laparoscopic gastric bypass surgery and adjustable gastric banding significantly decrease the prevalence of type 2 diabetes mellitus and pre-diabetes among morbidly obese multiethnic adults: long-term outcome results. J Am Coll Surg. 2011;212:505–11.CrossRefGoogle Scholar
  26. 26.
    De La Cruz-Muñoz N, Lopez-Mitnik G, Arheart KL, Livingstone A, Forno E, Miller TL, et al. Laparoscopic gastric bypass surgery and adjustable gastric banding significantly improves cardiometabolic disease risk among morbidly obese multiethnic adolescents. Circulation. 2010;122(21 Suppl 23):A19842.Google Scholar
  27. 27.
    Pontiroli AE, Pizzocri P, Librenti MC, Vedani P, Marchi M, Cucchi E, et al. Laparoscopic adjustable gastric banding for the treatment of morbid (grade 3) obesity and its metabolic complications: a three-year study. J Clin Endocrinol Metab. 2002;87:3555–61.CrossRefGoogle Scholar
  28. 28.
    Chaston TB, Dixon JB. Factors associated with percent change in visceral versus subcutaneous abdominal fat during weight loss: findings from a systematic review. Int J Obes. 2008;32:619–28.CrossRefGoogle Scholar
  29. 29.
    Phillips ML, Lewis MC, Chew V, Kow L, Slavotinek JP, Daniels L, et al. The early effects of weight loss surgery on regional adiposity. Obes Surg. 2005;15:1449–55.CrossRefGoogle Scholar
  30. 30.
    Weiss R, Appelbaum L, Schweiger C, Matot I, Constantini N, Idan A, et al. Short-term dynamics and metabolic impact of abdominal fat depots after bariatric surgery. Diabetes Care. 2009;32:1910–5.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kim MK, Lee HC, Kwon HS, Baek KH, Kim EK, Lee KW, Song KH. Visceral obesity is a negative predictor of remission of diabetes 1 year after bariatric surgery. Obesity (Silver Spring). 2011;19:1835–9.CrossRefGoogle Scholar
  32. 32.
    Heath ML, Kow L, Slavotinek JP, Valentine R, Toouli J, Thompson CH. Abdominal adiposity and liver fat content 3 and 12 months after gastric banding surgery. Metabolism. 2009;58:753–8.CrossRefGoogle Scholar
  33. 33.
    Willens HJ, Byers P, Chirinos JA, Labrador E, Hare JM, de Marchena E. Effects of weight loss after bariatric surgery on epicardial fat measured using echocardiography. Am J Cardiol. 2007;99:1242–5.CrossRefGoogle Scholar
  34. 34.
    Altin C, Erol V, Aydin E, Yilmaz M, Tekindal MA, Sade LE, et al. Impact of weight loss on epicardial fat and carotid intima media thickness after laparoscopic sleeve gastrectomy: a prospective study. Nutr Metab Cardiovasc Dis. 2018;28:501–9.CrossRefGoogle Scholar
  35. 35.
    Gaborit B, Jacquier A, Kober F, Abdesselam I, Cuisset T, Boullu-Ciocca S, et al. Effects of bariatric surgery on cardiac ectopic fat: lesser decrease in epicardial fat compared to visceral fat loss and no change in myocardial triglyceride content. J Am Coll Cardiol. 2012;60:1381–9.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wu FZ, Huang YL, Wu CC, Wang YC, Pan HJ, Huang CK, et al. Differential effects of bariatric surgery versus exercise on excessive visceral fat deposits. Medicine (Baltimore). 2016;95:e2616.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Christensen RH, Wedell-Neergaard AS, Lehrskov LL, Legaard GE, Dorph E, Larsen MK, et al. Effect of aerobic and resistance exercise on cardiac adipose tissues: secondary analyses from a randomized clinical trial. JAMA Cardiol. 2019; [Epub ahead of print].
  38. 38.
    Fernandez-del-Valle M, Gonzales JU, Kloiber S, Mitra S, Klingensmith J, Larumbe-Zabala E. Effects of resistance training on MRI-derived epicardial fat volume and arterial stiffness in women with obesity: a randomized pilot study. Eur J Appl Physiol. 2018;118:1231–40.CrossRefGoogle Scholar
  39. 39.
    Kahl KG, Kerling A, Tegtbur U, Gützlaff E, Herrmann J, Borchert L, et al. Effects of additional exercise training on epicardial, intra-abdominal and subcutaneous adipose tissue in major depressive disorder: a randomized pilot study. J Affect Disord. 2016;192:91–7.CrossRefGoogle Scholar
  40. 40.
    Company JM, Booth FW, Laughlin MH, Arce-Esquivel AA, Sacks HS, Bahouth SW, Fain JN. Epicardial fat gene expression after aerobic exercise training in pigs with coronary atherosclerosis: relationship to visceral and subcutaneous fat. J Appl Physiol. 2010;109:1904–12.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Christensen RH, Wedell-Neergaard AS, Lehrskov LL, Legård GE, Dorph EB, Nymand S, et al. The role of exercise combined with tocilizumab in visceral and epicardial adipose tissue and gastric emptying rate in abdominally obese participants: protocol for a randomised controlled trial. Trials. 2018;19:266.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Rabkin SW, Campbell H. Comparison of reducing epicardial fat by exercise, diet or bariatric surgery weight loss strategies: a systematic review and meta-analysis. Obes Rev. 2015;16:406–15.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kim MK, Tomita T, Kim MJ, Sasai H, Maeda S, Tanaka K. Aerobic exercise training reduces epicardial fat in obese men. J Appl Physiol. 2009;106:5–11.CrossRefGoogle Scholar
  44. 44.
    Wilund KR, Tomayko EJ, Wu PT, Ryong Chung H, Vallurupalli S, Lakshminarayanan B, Fernhall B. Intradialytic exercise training reduces oxidative stress and epicardial fat: a pilot study. Nephrol Dial Transplant. 2010;25:2695–701.CrossRefGoogle Scholar
  45. 45.
    Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, LEADER Steering Committee, LEADER Trial Investigators, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, SUSTAIN-6 Investigators, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–44.CrossRefGoogle Scholar
  47. 47.
    Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, REWIND Investigators, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019;394:121–30.CrossRefGoogle Scholar
  48. 48.
    Dutour A, Abdesselam I, Ancel P, Kober F, Mrad G, Darmon P, et al. Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and type 2 diabetes: a prospective randomized clinical trial using magnetic resonance imaging and spectroscopy. Diabetes Obes Metab. 2016;18:882–91.CrossRefGoogle Scholar
  49. 49.
    Iacobellis G, Camarena V, Sant DW, Wang G. Human epicardial fat expresses glucagon-like peptide 1 and 2 receptors genes. Horm Metab Res. 2017;49:625–30.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Pyke C, Knudsen LB. The glucagon-like peptide-1 receptor—or not? Endocrinology. 2013;154:4–8.CrossRefGoogle Scholar
  51. 51.
    Yang J, Ren J, Song J, Liu F, Wu C, Wang X, et al. Glucagon-like peptide 1 regulates adipogenesis in 3T3-L1 preadipocytes. Int J Mol Med. 2013;31:1429–35.CrossRefGoogle Scholar
  52. 52.
    Beiroa D, Imbernon M, Gallego R, Senra A, Herranz D, Villarroya F, et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes. 2014;63:3346–58.CrossRefGoogle Scholar
  53. 53.
    Vendrell J, El Bekay R, Peral B, García-Fuentes E, Megia A, Macias-Gonzalez M, et al. Study of the potential association of adipose tissue GLP-1 receptor with obesity and insulin resistance. Endocrinology. 2011;152:4072–9.CrossRefGoogle Scholar
  54. 54.
    Dozio E, Vianello E, Malavazos AE, Tacchini L, Schmitz G, Iacobellis G, Corsi Romanelli MM. Epicardial adipose tissue GLP-1 receptor is associated with genes involved in fatty acid oxidation and white-to-brown fat differentiation: a target to modulate cardiovascular risk? Int J Cardiol. 2019;292:218–24.CrossRefGoogle Scholar
  55. 55.
    Aroor A, McKarns S, Nistala R, DeMarco V, Gardner M, Garcia-Touza M, et al. DPP-4 inhibitors as therapeutic modulators of immune cell function and associated cardiovascular and renal insulin resistance in obesity and diabetes. Cardiorenal Med. 2013;3:48–56.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Shah Z, Kampfrath T, Deiuliis JA, Zhong J, Pineda C, Ying Z, et al. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation. 2011;124:2338–49.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Shimasaki T, Masaki T, Mitsutomi K, Ueno D, Gotoh K, Chiba S, et al. The dipeptidyl peptidase-4 inhibitor des-fluoro-sitagliptin regulates brown adipose tissue uncoupling protein levels in mice with diet-induced obesity. PLoS One. 2013;8:e63626.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, EMPA-REG OUTCOME Investigators, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.CrossRefGoogle Scholar
  59. 59.
    Mahaffey KW, Neal B, Perkovic V, de Zeeuw D, Fulcher G, Erondu N, CANVAS Program Collaborative Group, et al. Canagliflozin for primary and secondary prevention of cardiovascular events: results from the CANVAS Program (Canagliflozin Cardiovascular Assessment Study). Circulation. 2018;137:323–34.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, DECLARE–TIMI 58 Investigators, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347–57.CrossRefGoogle Scholar
  61. 61.
    Guedes EP, Hohl A, de Melo TG, Lauand F. Dapagliflozin: farmacology, efficacy and safety in type 2 diabetes treatment. Diabetol Metab Syndr. 2013;5:25.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Bolinder J, Ljunggren Ö, Kullberg J, Johansson L, Wilding J, Langkilde AM, et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab. 2012;97:1020–31.CrossRefGoogle Scholar
  63. 63.
    Díaz-Rodríguez E, Agra RM, Fernández ÁL, Adrio B, García-Caballero T, González-Juanatey JR, Eiras S. Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability. Cardiovasc Res. 2018;114:336–46.CrossRefGoogle Scholar
  64. 64.
    Sacks HS, Fain JN, Cheema P, Bahouth SW, Garrett E, Wolf RY. Inflammatory genes in epicardial fat contiguous with coronary atherosclerosis in the metabolic syndrome and type 2 diabetes: changes associated with pioglitazone. Diabetes Care. 2011;34:730–3.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Jonker JT, Lamb HJ, van der Meer RW, Rijzewijk LJ, Menting LJ, Diamant M, et al. Pioglitazone compared with metformin increases pericardial fat volume in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95:456–60.CrossRefGoogle Scholar
  66. 66.
    Distel E, Penot G, Cadoudal T, Balguy I, Durant S, Benelli C. Early induction of a brown-like phenotype by rosiglitazone in the epicardial adipose tissue of fatty Zucker rats. Biochimie. 2012;94:1660–7.CrossRefGoogle Scholar
  67. 67.
    Iacobellis G, Sharma AM, Pellicelli AM, Grisorio B, Barbarini G, Barbaro G. Epicardial adipose tissue is related to carotid intima-media thickness and visceral adiposity in HIV-infected patients with highly active antiretroviral therapy-associated metabolic syndrome. Curr HIV Res. 2007;5:275–9.CrossRefGoogle Scholar
  68. 68.
    Iacobellis G, Pellicelli AM, Sharma AM, Grisorio B, Barbarini G, Barbaro G. Relation of subepicardial adipose tissue to carotid intima-media thickness in patients with human immunodeficiency virus. Am J Cardiol. 2007;99:1470–2.CrossRefGoogle Scholar
  69. 69.
    Nasarre L, Juan-Babot O, Gastelurrutia P, Llucia-Valldeperas A, Badimon L, Bayes-Genis A, Llorente-Cortés V. Low density lipoprotein receptor-related protein 1 is upregulated in epicardial fat from type 2 diabetes mellitus patients and correlates with glucose and triglyceride plasma levels. Acta Diabetol. 2014;51:23–30.CrossRefGoogle Scholar
  70. 70.
    Grosso AF, de Oliveira SF, Higuchi Mde L, Favarato D, Dallan LA, da Luz PL. Synergistic anti-inflammatory effect: simvastatin and pioglitazone reduce inflammatory markers of plasma and epicardial adipose tissue of coronary patients with metabolic syndrome. Diabetol Metab Syndr. 2014;6:47.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Yamaguchi Y, Cavallero S, Patterson M, Shen H, Xu J, Kumar SR, Sucov HM. Adipogenesis and epicardial adipose tissue: a novel fate of the epicardium induced by mesenchymal transformation and PPARγ activation. Proc Natl Acad Sci U S A. 2015;112:2070–5.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Lanes R, Soros A, Flores K, Gunczler P, Carrillo E, Bandel J. Endothelial function, carotid artery intima-media thickness, epicardial adipose tissue, and left ventricular mass and function in growth hormone-deficient adolescents: apparent effects of growth hormone treatment on these parameters. J Clin Endocrinol Metab. 2005;90:3978–82.CrossRefGoogle Scholar
  73. 73.
    Granato S, Barbaro G, Di Giorgio MR, Rossi FM, Marzano C, Impronta F, et al. Epicardial fat: the role of testosterone and lipid metabolism in a cohort of patients with Klinefelter syndrome. Metabolism. 2019;95:21–6.CrossRefGoogle Scholar
  74. 74.
    Şahin M, Canpolat AG, Çorapçioğlu D, Canpolat U, Emral R, Uysal AR. Association between circulating irisin levels and epicardial fat in patients with treatment-naïve overt hyperthyroidism. Biomarkers. 2018;23:742–7.CrossRefGoogle Scholar
  75. 75.
    Altunbaş R, Eren MA, Altıparmak İH, Karaaslan H, Sabuncu T. The relation between epicardial fat tissue thickness and tsh receptor antibody in hyperthyroidism. Exp Clin Endocrinol Diabetes. 2019;127:37–40.PubMedGoogle Scholar
  76. 76.
    Asik M, Sahin S, Ozkul F, Anaforoglu I, Ayhan S, Karagol S, et al. Evaluation of epicardial fat tissue thickness in patients with Hashimoto thyroiditis. Clin Endocrinol. 2013;79:571–6.CrossRefGoogle Scholar
  77. 77.
    Kocyigit I, Gungor O, Unal A, Yasan M, Orscelik O, Tunca O, et al. A low serum free triiodothyronine level is associated with epicardial adipose tissue in peritoneal dialysis patients. J Atheroscler Thromb. 2014;21:1066–74.CrossRefGoogle Scholar
  78. 78.
    del Busto-Mesa A, Cabrera-Rego JO, Carrero-Fernández L, Hernández-Roca CV, González-Valdés JL, de la Rosa-Pazos JE. Changes in arterial stiffness, carotid intima-media thickness, and epicardial fat after L-thyroxine replacement therapy in hypothyroidism. Endocrinol Nutr. 2015;62:270–6.CrossRefGoogle Scholar
  79. 79.
    Fatma E, Bunyamin K, Savas S, Mehmet U, Selma Y, Ismail B, et al. Epicardial fat thickness in patients with rheumatoid arthritis. Afr Health Sci. 2015;15:489–95.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Lima-Martínez MM, Campo E, Salazar J, Paoli M, Maldonado I, Acosta C, et al. Epicardial fat thickness as cardiovascular risk factor and therapeutic target in patients with rheumatoid arthritis treated with biological and nonbiological therapies. Arthritis. 2014;2014:782850.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Division of Endocrinology, Diabetes and Metabolism, Department of MedicineUniversity of Miami, Miller School of MedicineMiamiUSA

Personalised recommendations