Advertisement

A Framework for Quantifying Effects of Characterization Error on the Predicted Local Elastic Response in Polycrystalline Materials

  • Noah Wade
  • Michael D. Uchic
  • Amanda Criner
  • Lori Graham-BradyEmail author
Chapter
  • 52 Downloads

Abstract

Three-dimensional microstructural information has become increasingly important to advanced computational modeling, and future developments in the field rely on continued maturation of the technology. In this work, a framework for analyzing the error associated with the collection of 3D data sets is proposed. The framework allows users to evaluate errors introduced into the data collection process through the selection of various experimental parameters. Synthetically generated microstructures, called phantoms, are used as a baseline. A simple model for microstructural data collection via electron backscatter diffraction is established. This model is used to simulate data collection from the phantom microstructures, in order to make observations about the effects of individual characterization parameter selection. By comparing simulations to the original phantoms, direct error measurements can be made. Results show how resolution, sample size, and noise can affect the quality of data sets. Finally, the framework is used to show how errors in computational models based on reconstructed microstructures are dependent on the choice of characterization parameters used to generate these microstructures.

Keywords

Microstructural characterization Uncertainty quantification Electron back-scatter diffraction Synthetic microstructure generation Finite element modeling Three-dimensional characterization Serial sectioning Error propagation Resolution Dream3D 

References

  1. 1.
    R.T. DeHoff, Quantitative serial sectioning analysis: preview. J. Microsc. 131(3), 259–263 (1983)CrossRefGoogle Scholar
  2. 2.
    M. Uchic, Serial Sectioning Methods for Generating 3D Characterization Data of Grain- and Precipitate-Scale Microstructures (Springer, Boston, 2011), pp. 31–52Google Scholar
  3. 3.
    X. Lui, D. Furrer, J. Kosters, J. Holmes, Vision 2040: a roadmap for integrated, multiscale modeling and simulation of materials and systems. Technical report, NASA Glenn Research Center (2018)Google Scholar
  4. 4.
    M. Groeber, Digital Representation of Materials Grain Structure (Springer, Boston, 2011), pp. 53–97Google Scholar
  5. 5.
    T. Sakamoto, Z. Cheng, M. Takahashi, M.Owari, Y. Nihei, Development of an ion and electron dual focused beam apparatus for three-dimensional microanalysis. Jpn. J. Appl. Phys. 37(4R), 2051 (1998)Google Scholar
  6. 6.
    M. Uchic, M. Groeber, D. Dimiduk, J.P. Simmons, 3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam fib-sem. Scr. Mater. 55(1), 23–28 (2006). Viewpoint set no. 41 “3D Characterization and Analysis of Materials” Organized by G. SpanosGoogle Scholar
  7. 7.
    S. Zaefferer, S. Wright, D. Raabe, Three-dimensional orientation microscopy in a focused ion beam–scanning electron microscope: a new dimension of microstructure characterization. Metall. Mater. Trans. A 39(2), 374–389 (2008)CrossRefGoogle Scholar
  8. 8.
    J. Guyon, N. Gey, D. Goran, S. Chalal, F. Pérez-Willard, Advancing fib assisted 3D EBSD using a static sample setup. Ultramicroscopy 161, 161–167 (2016)CrossRefGoogle Scholar
  9. 9.
    T.L. Burnett, R. Kelley, B. Winiarski, L. Contreras, M. Daly, A. Gholinia, M.G. Burke, P.J. Withers, Large volume serial section tomography by Xe plasma FIB dual beam microscopy. Ultramicroscopy 161, 119–129 (2016)CrossRefGoogle Scholar
  10. 10.
    S. Monteiro, S. Paciornik, From historical backgrounds to recent advances in 3D characterization of materials: an overview. JOM 69(1), 84–92 (2017)CrossRefGoogle Scholar
  11. 11.
    M. Echlin, A. Mottura, C.J. Torbet, T. Pollock, A new tribeam system for three-dimensional multimodal materials analysis. Rev. Sci. Instrum. 83(2), 023701 (2012)Google Scholar
  12. 12.
    M. Uchic, L. Holzer, B. Inkson, E. Principe, P. Munroe, Three-dimensional microstructural characterization using focused ion beam tomography. MRS Bull. 32(5), 408–416 (2007)CrossRefGoogle Scholar
  13. 13.
    W.C. Lenthe, Twin related domains in polycrystalline nickel-base superalloys: 3D structure and fatigue. Ph.D. thesis, UCSB. Copyright – database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works; Last updated – 28 Apr 2018 (2017)Google Scholar
  14. 14.
    F. Rhines, K. Craig, D. Rousse, Measurement of average grain volume and certain topological parameters by serial section analysis. Metall. Trans. A 7(11), 1729–1734 (1976). Cited By 31Google Scholar
  15. 15.
    T.H. Hoang, M. Guerich, J. Yvonnet, Determining the size of RVE for nonlinear random composites in an incremental computational homogenization framework. J. Eng. Mech. 142(5), 04016018 (2016)Google Scholar
  16. 16.
    M. Pinz, G. Weber, W.C. Lenthe, M.D. Uchic, T.M. Pollock, S. Ghosh, Microstructure and property based statistically equivalent RVEs for intragranular γγ′ microstructures of Ni-based superalloys. Acta Mater. 157, 245–258 (2018)CrossRefGoogle Scholar
  17. 17.
    K. Teferra, L. Graham-Brady, A random field-based method to estimate convergence of apparent properties in computational homogenization. Comput. Methods Appl. Mech. Eng. 330, 253–270 (2018)CrossRefGoogle Scholar
  18. 18.
    M. Groeber, S. Ghosh, M. Uchic, D. Dimiduk, A framework for automated analysis and simulation of 3D polycrystalline microstructures: part 1: statistical characterization. Acta Mater. 56(6), 1257–1273 (2008)CrossRefGoogle Scholar
  19. 19.
    G. Loughnane, M. Groeber, M. Uchic, M. Shah, R. Srinivasan, R. Grandhi, Modeling the effect of voxel resolution on the accuracy of phantom grain ensemble statistics. Mater. Charact. 90, 136–150 (2014)CrossRefGoogle Scholar
  20. 20.
    F. Ram, S. Wright, S. Singh, M. De Graef, Error analysis of the crystal orientations obtained by the dictionary approach to EBSD indexing. Ultramicroscopy 181, 17–26 (2017)CrossRefGoogle Scholar
  21. 21.
    G. Spanos, J. Allison, B. Cowles, J. DeLoach, T. Pollock, Implementing integrated computational materials engineering (ICME) in the aerospace, automotive, and maritime industries. Technical report, The Minerals, Metals, and Materials Society, http://www.tms.org/icmestudy (2013)
  22. 22.
    M. Groeber, M. Jackson, Dream.3D: a digital representation environment for the analysis of microstructure in 3D. Integr. Mater. Manuf. Innov. 3(1), 5 (2014)Google Scholar
  23. 23.
    Dassault Systèmes. Abaqus (2017)Google Scholar
  24. 24.
    K. Teferra, L.Graham-Brady, Tessellation growth models for polycrystalline microstructures. Comput. Mater. Sci. 102, 57–67 (2015)CrossRefGoogle Scholar
  25. 25.
    BlueQuartz, http://dream3d.bluequartz.net/. Dream.3D User Manual – Erode/Dilate Bad Data
  26. 26.
    J. Goldstein, D. Newbury, J. Michae, N. Ritchie, J. Scott, D. Joy, Scanning Electron Microscopy and X-Ray Microanalysis (Springer, New York, 2018)CrossRefGoogle Scholar
  27. 27.
    K. Kanaya, S. Okayama Penetration and energy-loss theory of electrons in solid targets. J. Phys. D Appl. Phys. 5(1), 43 (1972)Google Scholar
  28. 28.
    V. Randle, Electron backscatter diffraction: strategies for reliable data acquisition and processing. Mater. Charact. 60(9), 913–922 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Noah Wade
    • 1
  • Michael D. Uchic
    • 2
  • Amanda Criner
    • 2
  • Lori Graham-Brady
    • 1
    Email author
  1. 1.Department of Civil EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Materials and Manufacturing DirectorateAir Force Research LaboratoryWright-Patterson AFB, DaytonUSA

Personalised recommendations