Non-deterministic Calibration of Crystal Plasticity Model Parameters



Crystal plasticity constitutive models are frequently used with finite elements for modeling metallic grain-scale phenomena. The accuracy of these models is directly a function of the calibrated parameters, which fully define a crystal plasticity model. A number of techniques exist for the calibration of these parameters. In the current study, a comparison of results using deterministic and non-deterministic calibration methods is made. Additionally, the effect of the type of measured data on calibrated material parameters, global (homogenized) or local, is also presented. Included in the study is a new approach to parameter calibration based on combined digital image correlation and high angular resolution electron backscatter diffraction. Utilizing data from these experimental techniques allows for local evaluation of both strain and relative stress: essentially giving stress-strain curves from numerous point locations in a single coupon. The overall result is that calibration based on sub-grain-scale measurements is preferable when sub-grain-scale phenomena are of primary interest.


  1. 1.
    S. Avril, M. Bonnet, A.S. Bretelle, M. Grédiac, F. Hild, P. Ienny, F. Latourte, D. Lemosse, S. Pagano, E. Pagnacco, F. Pierron, Overview of identification methods of mechanical parameters based on full-field measurements. Exp. Mech. 48(4), 381 (2008)Google Scholar
  2. 2.
    M. Bertin, C. Du, J.P. Hoefnagels, F. Hild, Crystal plasticity parameter identification with 3D measurements and integrated digital image correlation. Acta Mater. 116, 321–331 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Bonnet, A. Constantinescu, Inverse problems in elasticity. Inverse Prob. 21(2), R1 (2005).
  4. 4.
    J.E. Bozek, J.D. Hochhalter, M.G. Veilleux, M. Liu, G. Heber, S.D. Sintay, A.D. Rollett, D.J. Littlewood, A.M. Maniatty, H. Weiland, R.J. Christ, J. Payne, G. Welsh, D.G. Harlow, P.A. Wawrzynek, A.R. Ingraffea, A geometric approach to modeling microstructurally small fatigue crack formation: I. Probabilistic simulation of constituent particle cracking in AA 7075-T651. Model. Simul. Mater. Sci. Eng. 16(6), 065007 (2008)Google Scholar
  5. 5.
    T. Britton, C. Maurice, R. Fortunier, J. Driver, A. Day, G. Meaden, D. Dingley, K. Mingard, A. Wilkinson, Factors affecting the accuracy of high resolution electron backscatter diffraction when using simulated patterns. Ultramicroscopy 110, 1443–1453 (2010)CrossRefGoogle Scholar
  6. 6.
    S.P. Brooks, G.O. Roberts, Convergence assessment techniques for markov chain Monte Carlo. Stat. Comput. 8(4), 319–335 (1998)CrossRefGoogle Scholar
  7. 7.
    J. Brynjarsdóttir, A. O’Hagan, Learning about physical parameters: the importance of model discrepancy. Inverse Prob. 30(11), 114007 (2014)Google Scholar
  8. 8.
    G.M. Castelluccio, D.L. Mcdowell, A mesoscale modeling of microstructurally small fatigue cracks in metallic polycrystals. Mater. Sci. Eng. A 598, 34–55 (2014)CrossRefGoogle Scholar
  9. 9.
    Z. Chen, W. Lenthe, J.C. Stinville, M. Echlin, T.M. Pollock, S. Daly, High-resolution deformation mapping across large fields of view using scanning electron microscopy and digital image correlation. Exp. Mech. 58(9), 1407–1421 (2018)CrossRefGoogle Scholar
  10. 10.
    Y. Dong, B. Pan, A review of speckle pattern fabrication and assessment for digital image correlation. Exp. Mech. 57(8), 1161–1181 (2017)CrossRefGoogle Scholar
  11. 11.
    F. Gao, L. Han, Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Comput. Optim. Appl. 51(1), 259–277 (2012)CrossRefGoogle Scholar
  12. 12.
    C. Geuzaine, J.F. Remacle, GMSH: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)CrossRefGoogle Scholar
  13. 13.
    J. Geweke et al., Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments, vol. 196. Federal Reserve Bank of Minneapolis, Research Department Minneapolis (1991)Google Scholar
  14. 14.
    M. Groeber, M. Jackson, DREAM.3D: a digital representation environment for the analysis of microstructure in 3D. Integr. Mater. Manuf. Innov. 3(1), 5 (2014)Google Scholar
  15. 15.
    A. Guery, F. Hild, F. Latourte, S. Roux, Identification of crystal plasticity parameters using DIC measurements and weighted FEMU. Mech. Mater. 100, 55–71 (2016)CrossRefGoogle Scholar
  16. 16.
    H. Haario, M. Laine, A. Mira, E. Saksman, Dram: efficient adaptive MCMC. Stat. Comput. 16(4), 339–354 (2006)CrossRefGoogle Scholar
  17. 17.
    T. Hoc, J. Crèpin, L. Gèplèrt, A. Zaoui, A nonprocedure for identifying the plastic behavior of single crystals from the local response of polycrystals. Acta Mater. 51(18), 5477–5488 (2003)CrossRefGoogle Scholar
  18. 18.
    B.E. Jackson, J.J. Christensen, S. Singh, M. De Graef, D.T. Fullwood, E.R. Homer, R.H. Wagoner, Performance of dynamically simulated reference patterns for cross-correlation electron backscatter diffraction. Microsc. Microanal. 22(4), 789–802 (2016)CrossRefGoogle Scholar
  19. 19.
    H. Jin, W. Lu, J. Korellis, Micro-scale deformation measurement using the digital image correlation technique and scanning electron microscope imaging. J. Strain Anal. Eng. Des. 43(8), 719–728 (2008)CrossRefGoogle Scholar
  20. 20.
    J. Kacher, C. Landon, B.L. Adams, D. Fullwood, Bragg‘s law diffraction simulations for electron backscatter diffraction analysis. Ultramicroscopy 109(9), 1148–1156 (2009)CrossRefGoogle Scholar
  21. 21.
    J. Kaipio, E. Somersalo, Statistical and Computational Inverse Problems (Springer Science & Business Media, New York, 2006)Google Scholar
  22. 22.
    M.C. Kennedy, A. O’Hagan, Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 63(3), 425–464 (2001)Google Scholar
  23. 23.
    R. Lebensohn, C. Tomé, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall. et Mater. 41(9), 2611–2624 (1993)CrossRefGoogle Scholar
  24. 24.
    H. Leclerc, J.N. Périé, S. Roux, F. Hild, Integrated digital image correlation for the identification of mechanical properties, in Proceedings of the 4th International Conference on Computer Vision/Computer Graphics Collaboration Techniques (Springer, 2009), pp. 161–171Google Scholar
  25. 25.
    H. Lim, J. Carroll, C. Battaile, T. Buchheit, B. Boyce, C. Weinberger, Grain-scale experimental validation of crystal plasticity finite element simulations of tantalum oligocrystals. Int. J. Plast. 60, 1–18 (2014)CrossRefGoogle Scholar
  26. 26.
    F. Mathieu, H. Leclerc, F. Hild, S. Roux, Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC. Exp. Mech. 55(1), 105–119 (2015)CrossRefGoogle Scholar
  27. 27.
    J. Nocedal, S. Wright, Numerical Optimization, Springer Series in Operations Research and Financial Engineering, 2nd edn. (Springer-Verlag, New York, 2006). Google Scholar
  28. 28.
    B. Pan, K. Qian, H. Xie, A. Asundi, Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas. Sci. Technol. 20(6), 062001 (2009)Google Scholar
  29. 29.
    A. Patil, D. Huard, C.J. Fonnesbeck, PyMC: bayesian stochastic modelling in Python. J. Stat. Softw. 35(4), 1–81 (2010)CrossRefGoogle Scholar
  30. 30.
    P.L. Phillips, A. Brockman, R. John, Modelling strategies for property identification based on full-field surface displacement data. Strain 48, 143–152 (2011)CrossRefGoogle Scholar
  31. 31.
    R.S. Piascik, N.F. Knight Jr., Re-tooling the agency’s engineering predictive practices for durability and damage tolerance. NASA/TM-2017–219621, 60 (2017)Google Scholar
  32. 32.
    O. Rokoš, J. Hoefnagels, R. Peerlings, M. Geers, On micromechanical parameter identification with integrated dic and the role of accuracy in kinematic boundary conditions. Int. J. Solids Struct. 146, 241–259 (2018)CrossRefGoogle Scholar
  33. 33.
    F. Roters, P. Eisenlohr, L. Hantcherli, D. Tjahjanto, T. Bieler, D. Raabe, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 58(4), 1152–1211 (2010)CrossRefGoogle Scholar
  34. 34.
    T. Ruggles, D. Fullwood, J. Kysar, Resolving geometrically necessary dislocation density onto individual dislocation types using EBSD-based continuum dislocation microscopy. Int. J. Plast. 76, 231–243 (2016)CrossRefGoogle Scholar
  35. 35.
    T.J. Ruggles, G.F. Bomarito, A.H. Cannon, J.D. Hochhalter, Selectively electron-transparent microstamping toward concurrent digital image correlation and high-angular resolution electron backscatter diffraction (EBSD) analysis. Microsc. Microanal. 23(6), 1091–1095 (2017)CrossRefGoogle Scholar
  36. 36.
    R. Russell, D. Dawicke, J. Hochhalter, Composite overwrapped pressure vessel (COPV) life test, in European Conference on Spacecraft Structures, Materials and Environmental Testing (ECSSMET). Electrostatics Society of America (ESA) (2018), pp. 1–6Google Scholar
  37. 37.
    M. Sangid, S. Yeratapally, A. Rovinelli, Validation of microstructure-based materials modeling, in 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics (2014).
  38. 38.
    R.C. Smith, Uncertainty Quantification: Theory, Implementation, and Applications (SIAM, Philadelphia, 2013)Google Scholar
  39. 39.
    M.A. Sutton, J.H. Yan, S. Avril, F. Pierron, S.M. Adeeb, Identification of heterogeneous constitutive parameters in a welded specimen: uniform stress and virtual fields methods for material property estimation. Exp. Mech. 48(4), 451–464 (2008)CrossRefGoogle Scholar
  40. 40.
    M.A. Sutton, J.J. Orteu, H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications (Springer Science & Business Media, New York, 2009)Google Scholar
  41. 41.
    G. Taylor, Plastic strain in metals. J. Inst. Met. 62, 307–324 (1938)Google Scholar
  42. 42.
    T.J. Turner, P.A. Shade, J.C. Schuren, M.A. Groeber, The influence of microstructure on surface strain distributions in a nickel micro-tension specimen. Model. Simul. Mater. Sci. Eng. 21, 015002 (2013)CrossRefGoogle Scholar
  43. 43.
    J.E. Warner, G.F. Bomarito, J.D. Hochhalter, Scalable Implementation of Finite Elements by NASA _ Implicit (ScIFEi), NASA/TM – 2016-219180. Technical Report April, NASA, Hampton (2016)Google Scholar
  44. 44.
    A.J. Wilkinson, G. Meaden, D.J. Dingley, High resolution mapping of strains and rotations using electron back scatter diffraction. Mater. Sci. Technol. 22(11), 1–11 (2006)CrossRefGoogle Scholar
  45. 45.
    S.R. Yeratapally, M.G. Glavicic, M. Hardy, M.D. Sangid, Microstructure based fatigue life prediction framework for polycrystalline nickel-base superalloys with emphasis on the role played by twin boundaries in crack initiation. Acta Mater. 107, 152–167 (2016)CrossRefGoogle Scholar
  46. 46.
    X. Zhang, Y. Wang, J. Yang, Z. Qiao, C. Ren, C. Chen, Deformation analysis of ferrite/pearlite banded structure under uniaxial tension using digital image correlation. Opt. Lasers Eng. 85, 24–28 (2016)CrossRefGoogle Scholar
  47. 47.
    Z. Zhao, M. Ramesh, D. Raabe, A.M. Cuitino, R. Radovitzky, Investigation of three-dimensional aspects of grain-scale plastic surface deformation of an aluminum oligocrystal. Int. J. Plast. 24, 2278–2297 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of UtahSalt Lake CityUSA
  2. 2.Durability, Damage Tolerance and Reliability BranchNASA Langley Research CenterHamptonUSA
  3. 3.Durability, Damage Tolerance and Reliability BranchNational Institute of AerospaceHamptonUSA

Personalised recommendations