Computational Micromechanics Modeling of Polycrystalline Superalloys: Application to Inconel 718

  • Aitor Cruzado
  • Javier Llorca
  • Javier Segurado EscuderoEmail author


A virtual testing methodology to obtain the mechanical response of a polycrystal as function of its microstructure is presented and applied to an Inconel 718 Ni-based superalloy. The mechanical behavior of the polycrystal for a given deformation history is obtained by the finite element simulation of the response of representative volume elements of the microstructure subjected to that particular deformation history. The microstructural information defining the representative volume elements (grain size distribution and texture) was obtained from standard metallographic characterization techniques. The behavior of the alloy crystals is given by a phenomenological crystal plasticity model, whose parameters were obtained using two different strategies, micropillar compression for the parameters defining the monotonic behavior and an inverse optimization strategy (using experimental macroscopic cyclic stress-strain curves) for the parameters controlling the cyclic deformation. From the macroscopic viewpoint, the material response under monotonic and cyclic deformation was in good agreement with the experimental data. At the micro level, the values of the local fields resolved throughout the volume elements were used to generate fatigue indicator parameters, which were able to determine the most critical points in the microstructure to initiate a fatigue crack. These fatigue indicator parameters were calibrated by comparison with a few experimental fatigue tests and then used to predict the effect of loading conditions (strain ranges and ratio) and microstructure (grain size) on the fatigue life of the superalloy. Overall, the strategy shows how a balanced combination of micromechanical and macromechanical tests together with the application of computational homogenization strategies can be used to predict the mechanical behavior of Ni-based superalloys taken into account the influence of the microstructure.


Superalloy Crystal plasticity Finite elements Cyclic plasticity Bauschinger effect Kinematic hardening Fatigue life prediction Micromechanics Microstructure Inconel 718 Size effects fatigue indicator parameter 


  1. 1.
    Abaqus (2013) Analysis User’s Manual, version 6.13. Dassault SystemsGoogle Scholar
  2. 2.
    P. Armstrong, C.A. Frederick, Mathematical representation of the multiaxial bauschinger effect. CEGB Report rd/b/n731, Berkeley nuclear laboratories, Berkeley (1966)Google Scholar
  3. 3.
    A. Banerjee, J.K. Sahu, C.D. Fernando, R.N. Ghosh, Micromechanisms of cyclic plastic deformation of alloy IN718 at 600 C. Fatigue Fract. Eng. Mater. Struct. 39, 877–885 (2016)CrossRefGoogle Scholar
  4. 4.
    C. Boehlert, H. Li, L. Wang, Slip system characterization of in 718 using in-situ scanning electron microscopy. Adv. Mater. Process. 168, 41–45 (2010)Google Scholar
  5. 5.
    R. Brommesson, M. Ekh, M. Hörnqvist, Correlation between crack length and load drop for low-cycle fatigue crack growth in ti-6242. Int. J. Fatigue 81, 1–9 (2015)CrossRefGoogle Scholar
  6. 6.
    G. Cailletaud, A micromechanical approach to inelastic behaviour of metals. Int. J. Plast. 8, 55–73 (1992)CrossRefGoogle Scholar
  7. 7.
    G.M. Castelluccio, D.L. McDowell, A mesoscale approach for growth of 3D microstructurally small fatigue cracks in polycrystals. Int. J. Damage Mech. 23, 791–818 (2013)CrossRefGoogle Scholar
  8. 8.
    G.M. Castelluccio, D.L. McDowell, Mesoscale modeling of microstructurally small fatigue cracks in metallic polycrystals. Mater. Sci. Eng. A 598, 34–55 (2014)CrossRefGoogle Scholar
  9. 9.
    G.M. Castelluccio, D.L. McDowell, Microstructure and mesh sensitivities of mesoscale surrogate driving force measures for transgranular fatigue cracks in polycrystals. Mater. Sci. Eng. A 639, 626–639 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Chaboche, On some modifications of kinematic hardening to improve the description of ratchetting effects. Int. J. Plast. 7, 661–678 (1991)CrossRefGoogle Scholar
  11. 11.
    J. Chaboche, D. Nouailhas, D. Pacou, P. Paulmier, Modeling of the cyclic response and rattchening effects on inconel 718 alloy. Eur. J. Mech. A/Solids 10, 101–102 (1991)Google Scholar
  12. 12.
    J. Chaboche, P. Kanouté, F. Azzouz, Cyclic inelastic constitutive equations and their impact on the fatigue life predictions. Int. J. Plast. 35, 44–66 (2012)CrossRefGoogle Scholar
  13. 13.
    P. Chakraborty, S. Ghosh, Accelerating cyclic plasticity simulations using an adaptive wavelet transformation based multitime scaling method. Int. J. Numer. Methods Eng. 93(13), 1425–1454 (2013)CrossRefGoogle Scholar
  14. 14.
    A. Cruzado, B. Gan, M. Jiménez, D. Barba, K. Ostolaza, A. Linaza, J. Molina-Aldareguia, J. Llorca, J. Segurado, Multiscale modeling of the mechanical behavior of inconel 718 superalloy based on micropillar compression and computational homogenization. Acta Mater. 98, 242–253 (2015)CrossRefGoogle Scholar
  15. 15.
    A. Cruzado, J. Llorca, J. Segurado, Modeling cyclic deformation of inconel 718 superalloy by means of crystal plasticity and computational homogenization. Int. J. Solids Struct. 122, 1521–1542 (2017)Google Scholar
  16. 16.
    A. Cruzado, S. Lucarini, J. Llorca, J. Segurado, Crystal plasticity simulation of the effect of grain size on the fatigue behavior of polycrystalline inconel 718. Int. J. Fatigue 113, 236–245 (2018)CrossRefGoogle Scholar
  17. 17.
    A. Cruzado, S. Lucarini, J. Llorca, J. Segurado, Microstructure-based fatigue life model of metallic alloys with bilinear coffin-manson behavior. Int. J. Fatigue 107, 40–48 (2018)CrossRefGoogle Scholar
  18. 18.
    Dream.3D, Website. (2012)
  19. 19.
    P. Eisenlohr, M. Diehl, R.A. Lebensohn, F. Roters, A spectral method solution to crystal elasto-viscoplasticity at finite strains. Int. J. Plast. 46, 37–53 (2013)CrossRefGoogle Scholar
  20. 20.
    Y.C. Fayman, Microstructural characterization and element partitioning in a direct – aged superalloy (DA718). Mater. Sci. Eng. A 92, 159–171 (1987)CrossRefGoogle Scholar
  21. 21.
    D. Fournier, A. Pineau, Low cycle fatigue behavior of inconel 718 at 298 k and 823 k. Metall. Trans. A 8(7), 1095–1105 (1977)CrossRefGoogle Scholar
  22. 22.
    C. Geuzaine, J.-F. Remacle, GMSH: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)CrossRefGoogle Scholar
  23. 23.
    D. Gustafsson, J. Moverare, K. Simonsson, S. Sjöström, Modeling of the constitutive behaviour of inconel 718 at intemediate temperatures. J. Eng. Gas Turbines Power 133, 1–4 (2011)CrossRefGoogle Scholar
  24. 24.
    E.O. Hall, The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. Sect. B 64, 747–753 (1951)CrossRefGoogle Scholar
  25. 25.
    S. Hazanov, C. Huet, Order relationships for boundary condition effects in heterogeneous bodies smaller that the representative volume. J. Mech. Phys. Solids 42, 1995–2011 (1994)CrossRefGoogle Scholar
  26. 26.
    R. Heilbronner, D. Bruhn, The influence of three-dimensional grain size distributions on the rheology of polyphase rocks. J. Struct. Geol. 20(6), 695–705 (1998)CrossRefGoogle Scholar
  27. 27.
    V. Herrera-Solaz, J. Llorca, E. Dogan, I. Karaman, J. Segurado, An inverse optimization strategy to determine single crystal mechanical behavior from polycrystal tests: application to AZ31 Mg alloy. Int. J. Plast. 57, 1–15 (2014)CrossRefGoogle Scholar
  28. 28.
    V. Herrera-Solaz, J. Segurado, J. Llorca, On the robustness of an inverse optimization approach based on the Levenberg-Marquardt method for the mechanical behavior of polycrystals. Eur. J. Mech./A 53, 220–228 (2015)Google Scholar
  29. 29.
    P. Hidalgo-Manrique, V. Herrera-Solaz, J. Segurado, J. Llorca, F. Gálvez, O.A. Ruano, S. Yi, M.T. Pérez-Prado, Origin of the reversed yield asymmetry in Mg-rare earth alloys at high temperature. Acta Mater. 92, 265–277 (2015)CrossRefGoogle Scholar
  30. 30.
    R. Hill, A self consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222 (1965)CrossRefGoogle Scholar
  31. 31.
    S. Kalluri, K.B.S. Rao, G.R. Halford, M.A. McGaw, Deformation and damage mechanisms in inconel 718 superalloy. in Superalloys 718, 625, 706 and Various Derivatives, The Minerals, Metals and Materials Society, pp. 593–606 (1994)Google Scholar
  32. 32.
    D. Kupka, N. Huber, E. Lilleodden, A combined experimental-numerical approach for elasto-plastic fracture of individual grain boundaries. J. Mech. Phys. Solids 64, 455–467 (2014)CrossRefGoogle Scholar
  33. 33.
    R.A. Lebensohn, N-site modelling of a 3D viscoplastic polycrystal using fast fourier transform. Acta Mater. 49, 2723–2737 (2001)CrossRefGoogle Scholar
  34. 34.
    R.A. Lebensohn, C.N. Tomé, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall. et Mater. 41, 2611–2624 (1993)CrossRefGoogle Scholar
  35. 35.
    R.A. Lebensohn, A.K. Kanjarla, P. Eisenlohr, An elasto-viscoplastic formulation based on fast fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int. J. Plast. 32–33, 59–69 (2012)CrossRefGoogle Scholar
  36. 36.
    F. Lu, Z. Guang, Z. Ke-shi, Discussion of cyclic plasticity and viscoplasticity of single crystal nickel-based superalloy in large strain analysis: comparison of anisotropic macroscopic model and crystallographic model. Int. J. Mech. Sci. 46(8), 1157–1171 (2004)CrossRefGoogle Scholar
  37. 37.
    S. Lucarini, J. Segurado, On the accuracy of spectral solvers for micromechanics based fatigue modeling. Comput. Mech. 63, 365–382 (2019)CrossRefGoogle Scholar
  38. 38.
    K. Maciejewski, H. Ghonem, Isotropic and kinematic hardening as functions of gamma prime precipitates in a nickel-based superalloy. Int. J. Fatigue 68, 123–135 (2014)CrossRefGoogle Scholar
  39. 39.
    A. Manonukul, F.P.E. Dunne, High– and low–cycle fatigue crack initiation using polycrystal plasticity. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 460(2047), 1881–1903 (2004)CrossRefGoogle Scholar
  40. 40.
    G. Martin, N. Ochoa, K. Sai, E. Herve-Luanco, G. Cailletaud, A multiscale model for the elastoviscoplastic behavior of directionally solidified alloys: application to fe structural computations. Int. J. Solids Struct. 51(5), 1175–1187 (2014)CrossRefGoogle Scholar
  41. 41.
    D. McDowell, Viscoplasticity of heterogeneous metallic materials. Mater. Sci. Eng. R Rep. 62(3), 67–123 (2008)CrossRefGoogle Scholar
  42. 42.
    L. Méric, P. Poubanne, G. Cailletaud, Single crystal modeling for structural calculations: part 1 model presentation. ASME J. Eng. Mater. Technol. 113, 162–170 (1991)CrossRefGoogle Scholar
  43. 43.
    H. Moulinec, P. Suquet, A fast numerical method for computing the linear and nonlinear mechanical properties of composites. Comptes Rendus de l’Académie des Sci. 318, 1417–1423 (1994)Google Scholar
  44. 44.
    W.D. Musinski, D.L. McDowell, Microstructure-sensitive probabilistic modeling of {HCF} crack initiation and early crack growth in ni-base superalloy {IN100} notched components. Int. J. Fatigue 37, 41–53 (2012)CrossRefGoogle Scholar
  45. 45.
    N. Ohno, J.-D. Wang, Kinematic hardening rules with critical state of dynamic recovery, part ii: application to experiments of ratchetting behavior. Int. J. Plast. 9(3), 391–403 (1993)CrossRefGoogle Scholar
  46. 46.
    S. Park, K. Kim, H. Kim, Ratcheting behaviour and mean stress considerations in uniaxial low-cycle fatigue of inconel 718 at 649 C. Fatigue Fract. Eng. Mater. Struct. 30(11), 1076–1083 (2007)CrossRefGoogle Scholar
  47. 47.
    D.K. Patel, S.R. Kalidindi, Estimating the slip resistance from spherical nanoindentation and orientation measurements in polycrystalline samples of cubic metals. Int. J. Plast. 92, 19–30 (2017)CrossRefGoogle Scholar
  48. 48.
    N.J. Petch, The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953)Google Scholar
  49. 49.
    T.M. Pollock, Alloy design for aircraft engines. Nat. Mater. 15, 809–815 (2016)CrossRefGoogle Scholar
  50. 50.
    N. Prasad, A. Paradkar, G. Malakondaiah, V. Kutumbarao, An analysis based on plastic strain energy for bilinearity in coffin-manson plots in an Al-Li alloy. Scripta Metall. et Mater. 30(12), 1497–1502 (1994)CrossRefGoogle Scholar
  51. 51.
    K. Praveen, V. Singh, Effect of heat treatment on coffin–manson relationship in {LCF} of superalloy {IN718}. Mater. Sci. Eng. A 485(1–2), 352–358 (2008)CrossRefGoogle Scholar
  52. 52.
    K. Praveen, G. Sastry, V. Singh, Room temperature LCF behaviour of superalloy in 718. Trans. Indian Inst. Metals 57(6), 623–630 (2004)Google Scholar
  53. 53.
    C.P. Przybyla, W.D. Musinski, G.M. Castelluccio, D.L. McDowell, Microstructure-sensitive {HCF} and {VHCF} simulations. Int. J. Fatigue 57, 9–27 (2013). Fatigue and microstructure: a special issue on recent advancesGoogle Scholar
  54. 54.
    D. Raabe, D. Ma, F. Roters, Effects of initial orientation, sample geometry and friction on anisotropy and crystallographic orientation changes in single crystal microcompression deformation: a crystal plasticity finite element study. Acta Mater. 55(13), 4567–4583 (2007)CrossRefGoogle Scholar
  55. 55.
    J.F. Radavich, The physical metallurgy of cast and wrought alloy 718. in Superalloy 718 – Metallurgy and Applications, The Minerals, Metals and Materials Society, pp. 229–240 (1989)Google Scholar
  56. 56.
    C. Rae, Alloys by design: modelling next generation superalloys. Mater. Sci. Technol. 25, 479–487 (2009)CrossRefGoogle Scholar
  57. 57.
    F. Roters, P. Eisenlohr, T.R. Bieler, D. Raabe, Crystal Plasticity Finite Element Methods: In Materials Science and Engineering. Wiley-VCH, Weinheim, Germany (2010)CrossRefGoogle Scholar
  58. 58.
    F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, D. Raabe, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 58, 1152–1211 (2010)CrossRefGoogle Scholar
  59. 59.
    A. Rovinelli, R.A. Lebensohn, M.D. Sangid, Influence of microstructure variability on short crack behavior through postulated micromechanical short crack driving force metrics. Eng. Fract. Mech. 138, 265–288 (2015)CrossRefGoogle Scholar
  60. 60.
    R. Sánchez-Martín, M.T. Pérez-Prado, J. Segurado, J. Bohlen, I. Gutiérrez-Urrutia, J. Llorca, J.M. Molina-Aldareguia, Measuring the critical resolved shear stresses in Mg alloys by instrumented nanoindentation. Acta Mater. 71, 283–292 (2014)CrossRefGoogle Scholar
  61. 61.
    T.H. Sanders, R. Frishmuth, G.T. Embley, Temperature dependent deformation mechanisms of alloy 718 in low cycle fatigue. Metall. Mater. Trans. A 12(6), 1003–1010 (1981)CrossRefGoogle Scholar
  62. 62.
    J. Segurado, J. Llorca, Simulation of the deformation of polycrystalline nanostructured Ti by computational homogenization. Comput. Mater. Sci. 76, 3–11 (2013)CrossRefGoogle Scholar
  63. 63.
    J. Segurado, R.A. Lebensohn, J. Llorca, Computational homogenization of polycrystals. Adv. Appl. Mech. 51, 1–114 (2018). ElsevierGoogle Scholar
  64. 64.
    M. Shenoy, J. Zhang, D. McDowell, Estimating fatigue sensitivity to polycrystalline ni-base superalloy microstructures using a computational approach. Fatigue Fract. Eng. Mater. Struct. 30(10), 889–904 (2007)CrossRefGoogle Scholar
  65. 65.
    M. Shenoy, Y. Tjiptowidjojo, D. McDowell, Microstructure-sensitive modeling of polycrystalline {IN} 100. Int. J. Plast. 24(10), 1694–1730 (2008). Special issue in honor of Jean-Louis ChabocheGoogle Scholar
  66. 66.
    I.N. Sneddon, The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3(1), 47–57 (1965)CrossRefGoogle Scholar
  67. 67.
    R. Soler, J.M. Molina-Aldareguia, J. Segurado, J. Llorca, Effect of misorientation on the compression of highly anisotropic single-crystal micropillars. Adv. Eng. Mater. 14(11), 1004–1008 (2012)CrossRefGoogle Scholar
  68. 68.
    Y.S. Song, M.R. Lee, J.T. Kim, Effect of grain size for the tensile strength and the low cycle fatigue at elevated temperature of alloy 718 cogged by open die forging press. in Superalloys 718, 625, 706 and Derivatives, ed. by E.A. Loria (TMS, Warrendale, 2005), pp. 539–549CrossRefGoogle Scholar
  69. 69.
    C. Sweeney, P. McHugh, J. McGarry, S. Leen, Micromechanical methodology for fatigue in cardiovascular stents. Int. J. Fatigue 44, 202–216 (2012)CrossRefGoogle Scholar
  70. 70.
    C.A. Sweeney, B. O’Brien, P.E. McHugh, S.B. Leen, Experimental characterisation for micromechanical modelling of CoCr stent fatigue. Biomaterials 35(1), 36–48 (2014)CrossRefGoogle Scholar
  71. 71.
    C. Sweeney, B. O’Brien, F. Dunne, P. McHugh, S. Leen, Micro-scale testing and micromechanical modelling for high cycle fatigue of CoCr stent material. J. Mech. Behav. Biomed. Mater. 46, 244–260 (2015)CrossRefGoogle Scholar
  72. 72.
    C. Tome, G. Canova, U. Kocks, N. Christodoulou, J. Jonas, The relation between macroscopic and microscopic strain hardening in F.C.C. polycrystals. Acta Metall. 32(10), 1637–1653 (1984)Google Scholar
  73. 73.
    M.D. Uchic, D.M. Dimiduk, J.N. Florando, W.D. Nix, Sample dimensions influence strength and crystal plasticity. Science 305(5686), 986–989 (2004)CrossRefGoogle Scholar
  74. 74.
    V. Wan, D. MacLachlan, F. Dunne, A stored energy criterion for fatigue crack nucleation in polycrystals. Int. J. Fatigue 68, 90–102 (2014)CrossRefGoogle Scholar
  75. 75.
    V. Wan, J. Jiang, D. MacLachlan, F. Dunne, Microstructure-sensitive fatigue crack nucleation in a polycrystalline Ni superalloy. Int. J. Fatigue 90, 181–190 (2016)CrossRefGoogle Scholar
  76. 76.
    L. Xiao, D. Chen, M. Chaturvedi, Shearing of γ” precipitates and formation of planar slip bands in inconel 718 during cyclic deformation. Scr. Mater. 52(7), 603–607 (2005)CrossRefGoogle Scholar
  77. 77.
    C. Zambaldi, C. Zehnder, D. Raabe, Orientation dependent deformation by slip and twinning in magnesium during single crystal indentation. Acta Mater. 91, 267–288 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Aitor Cruzado
    • 1
    • 2
  • Javier Llorca
    • 3
    • 4
  • Javier Segurado Escudero
    • 3
    • 4
    Email author
  1. 1.Department of Aerospace EngineeringTexas A& M UniversityCollege StationUSA
  2. 2.Center for Intelligent Multifunctional Materials and Structures, TEESTexas A& M UniversityCollege StationUSA
  3. 3.IMDEA Materials InstituteGetafeSpain
  4. 4.Department of Materials SciencePolytechnic University of MadridMadridSpain

Personalised recommendations