Advertisement

Microscale Testing and Characterization Techniques for Benchmarking Crystal Plasticity Models at Microstructural Length Scales

  • David W. EastmanEmail author
  • Paul A. Shade
  • Michael D. Uchic
  • Kevin J. HemkerEmail author
Chapter
  • 74 Downloads

Abstract

The desire to improve the performance and lifetime of polycrystalline components has fueled the development of advanced micromechanical modeling tools. Multiscale modeling approaches, such as Crystal Plasticity Finite Element Methods (CPFEM), now possess the ability to illuminate the link between material processing, microstructure, and properties [1]. Whereas traditional FE modeling relies on convergent macroscale properties, the ability of CPFEM to explicitly represent the morphology and local crystallographic orientations of polycrystalline microstructures requires scale-specific, quantitative microstructural information for both input and validation. The development and implementation of experimental techniques for capturing behavior and microstructural properties at salient length scales are needed to inform the determination of representative volume elements (RVEs). Here, accurately capturing microstructural details and observing size effects on material properties are both important. Simply extrapolating from average microstructure descriptors does not provide information about the relative importance of specific grain size, shape, and configuration with neighbors. These are features that can be captured experimentally through advanced characterization techniques, such as 3D serial sectioning [2].

References

  1. 1.
    S. Ghosh, D.M. Dimiduk, Computational Methods for Microstructure-Property Relationships (Springer, New York, NY, 2011)CrossRefGoogle Scholar
  2. 2.
    M.P. Echlin et al., The TriBeam system: femtosecond laser ablation in situ SEM. Mater. Charact. 100, 1–12 (2015)CrossRefGoogle Scholar
  3. 3.
    R. Becker, S. Panchanadeeswaran, Effects of grain interactions on deformation and local texture in polycrystals. Acta Metall. Mater. 43(7), 2701–2719 (1995)CrossRefGoogle Scholar
  4. 4.
    N. Zhang, W. Tong, An experimental study on grain deformation and interactions in an Al-0.5% Mg multicrystal. Int. J. Plast. 20(3), 523–542 (2004)CrossRefGoogle Scholar
  5. 5.
    K.-S. Cheong, E.P. Busso, Effects of lattice misorientations on strain heterogeneities in FCC polycrystals. J. Mech. Phys. Solids 54(4), 671–689 (2006)CrossRefGoogle Scholar
  6. 6.
    S.R. Kalidindi, A. Bhattacharyya, R.D. Doherty, Detailed analyses of grain–scale plastic deformation in columnar polycrystalline aluminium using orientation image mapping and crystal plasticity models. Proc. R. Soc. Lond. Ser. A 460(2047), 1935–1956 (2004)CrossRefGoogle Scholar
  7. 7.
    C. Rehrl et al., Crystal orientation changes: a comparison between a crystal plasticity finite element study and experimental results. Acta Mater. 60(5), 2379–2386 (2012)CrossRefGoogle Scholar
  8. 8.
    Z. Zhao et al., Investigation of three-dimensional aspects of grain-scale plastic surface deformation of an aluminum oligocrystal. Int. J. Plast. 24(12), 2278–2297 (2008)CrossRefGoogle Scholar
  9. 9.
    H. Lim et al., Grain-scale experimental validation of crystal plasticity finite element simulations of tantalum oligocrystals. Int. J. Plast. 60, 1–18 (2014)CrossRefGoogle Scholar
  10. 10.
    E. Héripré et al., Coupling between experimental measurements and polycrystal finite element calculations for micromechanical study of metallic materials. Int. J. Plast. 23(9), 1512–1539 (2007)CrossRefGoogle Scholar
  11. 11.
    A. Bhattacharyya et al., Evolution of grain-scale microstructure during large strain simple compression of polycrystalline aluminum with quasi-columnar grains: OIM measurements and numerical simulations. Int. J. Plast. 17(6), 861–883 (2001)CrossRefGoogle Scholar
  12. 12.
    T.J. Turner, S.L. Semiatin, Modeling large-strain deformation behavior and neighborhood effects during hot working of a coarse-grain nickel-base superalloy. Model. Simul. Mater. Sci. Eng. 19(6), 065010 (2011)CrossRefGoogle Scholar
  13. 13.
    L. St-Pierre et al., 3D simulations of microstructure and comparison with experimental microstructure coming from OIM analysis. Int. J. Plast. 24(9), 1516–1532 (2008)CrossRefGoogle Scholar
  14. 14.
    A. Musienko et al., Three-dimensional finite element simulation of a polycrystalline copper specimen. Acta Mater. 55(12), 4121–4136 (2007)CrossRefGoogle Scholar
  15. 15.
    A. Lewis et al., Two-and three-dimensional microstructural characterization of a super-austenitic stainless steel. Mater. Sci. Eng. A 418(1–2), 11–18 (2006)CrossRefGoogle Scholar
  16. 16.
    J. Alkemper, P. Voorhees, Quantitative serial sectioning analysis. J. Microsc. 201(3), 388–394 (2001)CrossRefGoogle Scholar
  17. 17.
    J.E. Spowart, H.E. Mullens, B.T. Puchala, Collecting and analyzing microstructures in three dimensions: a fully automated approach. JOM 55(10), 35–37 (2003)CrossRefGoogle Scholar
  18. 18.
    J.E. Spowart, Automated serial sectioning for 3-D analysis of microstructures. Scr. Mater. 55(1), 5–10 (2006)CrossRefGoogle Scholar
  19. 19.
    M.D. Uchic et al., Augmenting the 3D characterization capability of the dual beam FIB-SEM. Microsc. Microanal. 10(S02), 1136–1137 (2004)CrossRefGoogle Scholar
  20. 20.
    M.A. Groeber et al., 3D reconstruction and characterization of polycrystalline microstructures using a FIB–SEM system. Mater. Charact. 57(4–5), 259–273 (2006)CrossRefGoogle Scholar
  21. 21.
    N. Zaafarani et al., Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Mater. 54(7), 1863–1876 (2006)CrossRefGoogle Scholar
  22. 22.
    P.A. Shade et al., Micro-tensile testing and 3D-EBSD characterization of pure nickel multi-crystals (preprint). (Air Force Research Lab Wright-Patterson AFB OH Materials and Manufacturing DIR Metals Ceramics and Nondestructive Evaluation DIV/Metals Branch, 2011)Google Scholar
  23. 23.
    P.A. Shade et al., Experimental measurement of surface strains and local lattice rotations combined with 3D microstructure reconstruction from deformed polycrystalline ensembles at the micro-scale. Integr. Mater. Manuf. Innov. 2(1), 5 (2013)CrossRefGoogle Scholar
  24. 24.
    T. Turner et al., The influence of microstructure on surface strain distributions in a nickel micro-tension specimen. Model. Simul. Mater. Sci. Eng. 21(1), 015002 (2012)CrossRefGoogle Scholar
  25. 25.
    L. Kwakman et al., Sample preparation strategies for fast and effective failure analysis of 3D devices, in 39th International Symposium for Testing and Failure Analysis, San Jose, California, 2013Google Scholar
  26. 26.
    Y. Xiao et al., Investigation of the deformation behavior of aluminum micropillars produced by focused ion beam machining using Ga and Xe ions. Scr. Mater. 127, 191–194 (2017)CrossRefGoogle Scholar
  27. 27.
    T.L. Burnett et al., Large volume serial section tomography by Xe plasma FIB dual beam microscopy. Ultramicroscopy 161, 119–129 (2016)CrossRefGoogle Scholar
  28. 28.
    M.P. Echlin et al., A new TriBeam system for three-dimensional multimodal materials analysis. Rev. Sci. Instrum. 83(2), 023701 (2012)CrossRefGoogle Scholar
  29. 29.
    J. Stinville et al., A combined grain scale elastic–plastic criterion for identification of fatigue crack initiation sites in a twin containing polycrystalline nickel-base superalloy. Acta Mater. 103, 461–473 (2016)CrossRefGoogle Scholar
  30. 30.
    H.F. Poulsen, Three-Dimensional X-Ray Diffraction Microscopy: Mapping Polycrystals and Their Dynamics, vol 205 (Springer Science & Business Media, New York, NY, 2004)CrossRefGoogle Scholar
  31. 31.
    U. Lienert et al., High-energy diffraction microscopy at the advanced photon source. JOM 63(7), 70–77 (2011)CrossRefGoogle Scholar
  32. 32.
    H.F. Poulsen et al., Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders. J. Appl. Crystallogr. 34(6), 751–756 (2001)CrossRefGoogle Scholar
  33. 33.
    J.V. Bernier et al., Far-field high-energy diffraction microscopy: a tool for intergranular orientation and strain analysis. J. Strain Anal. Eng. Design 46(7), 527–547 (2011)CrossRefGoogle Scholar
  34. 34.
    H.F. Poulsen et al., Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders. J. Appl. Crystallogr. 34(6), 751–756 (2001)CrossRefGoogle Scholar
  35. 35.
    E.M. Lauridsen et al., Tracking: a method for structural characterization of grains in powders or polycrystals. J. Appl. Crystallogr. 34(6), 744–750 (2001)CrossRefGoogle Scholar
  36. 36.
    S. Li, R. Suter, Adaptive reconstruction method for three-dimensional orientation imaging. J. Appl. Crystallogr. 46(2), 512–524 (2013)CrossRefGoogle Scholar
  37. 37.
    R. Suter et al., Forward modeling method for microstructure reconstruction using x-ray diffraction microscopy: single-crystal verification. Rev. Sci. Instrum. 77(12), 123905 (2006)CrossRefGoogle Scholar
  38. 38.
    L. Margulies et al., Strain tensor development in a single grain in the bulk of a polycrystal under loading. Acta Mater. 50(7), 1771–1779 (2002)CrossRefGoogle Scholar
  39. 39.
    J. Oddershede et al., Determining grain resolved stresses in polycrystalline materials using three-dimensional X-ray diffraction. J. Appl. Crystallogr. 43(3), 539–549 (2010)CrossRefGoogle Scholar
  40. 40.
    P.A. Shade et al., A rotational and axial motion system load frame insert for in situ high energy x-ray studies. Rev. Sci. Instrum. 86(9), 093902 (2015)CrossRefGoogle Scholar
  41. 41.
    J.C. Schuren et al., New opportunities for quantitative tracking of polycrystal responses in three dimensions. Curr. Opinion Solid State Mater. Sci. 19(4), 235–244 (2015)CrossRefGoogle Scholar
  42. 42.
    T.J. Turner et al., Crystal plasticity model validation using combined high-energy diffraction microscopy data for a Ti-7Al specimen. Metall. Mater. Trans. A 48(2), 627–647 (2017)CrossRefGoogle Scholar
  43. 43.
    K. Hemker, W. Sharpe Jr., Microscale characterization of mechanical properties. Annu. Rev. Mater. Res. 37, 93–126 (2007)CrossRefGoogle Scholar
  44. 44.
    H. Espinosa, B. Prorok, M. Fischer, A methodology for determining mechanical properties of freestanding thin films and MEMS materials. J. Mech. Phys. Solids 51(1), 47–67 (2003)CrossRefGoogle Scholar
  45. 45.
    H. Espinosa, B. Prorok, B. Peng, Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension. J. Mech. Phys. Solids 52(3), 667–689 (2004)CrossRefGoogle Scholar
  46. 46.
    M. Haque, M. Saif, In-situ tensile testing of nano-scale specimens in SEM and TEM. Exp. Mech. 42(1), 123–128 (2002)CrossRefGoogle Scholar
  47. 47.
    S. Greek, S.A. Johansson, Tensile testing of thin-film microstructures, in Micromachined Devices and Components III, (International Society for Optics and Photonics, Bellingham, WA, 1997)Google Scholar
  48. 48.
    W.N. Sharpe Jr., An Interferometric Strain-Displacement Measurement System (National Aeronautics and Space Administration, Langley Research Center, Hampton, 1989)Google Scholar
  49. 49.
    T. Chu, W. Ranson, M.A. Sutton, Applications of digital-image-correlation techniques to experimental mechanics. Exp. Mech. 25(3), 232–244 (1985)CrossRefGoogle Scholar
  50. 50.
    A.D. Kammers, S. Daly, Self-assembled nanoparticle surface patterning for improved digital image correlation in a scanning electron microscope. Exp. Mech. 53(8), 1333–1341 (2013)CrossRefGoogle Scholar
  51. 51.
    J.C. Stinville et al., High resolution mapping of strain localization near twin boundaries in a nickel-based superalloy. Acta Mater. 98, 29–42 (2015)CrossRefGoogle Scholar
  52. 52.
    C. Montgomery, B. Koohbor, N.R. Sottos, A robust patterning technique for electron microscopy-based digital image correlation at sub-micron resolutions. Exp. Mech. 59(7), 1063–1073 (2019)CrossRefGoogle Scholar
  53. 53.
    T.M. Pollock, S. Tin, Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J. Propuls. Power 22(2), 361–374 (2006)CrossRefGoogle Scholar
  54. 54.
    S. Keshavarz, S. Ghosh, Multi-scale crystal plasticity finite element model approach to modeling nickel-based superalloys. Acta Mater. 61(17), 6549–6561 (2013)CrossRefGoogle Scholar
  55. 55.
    V.T. Srikar, S. Spearing, A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems. Exp Mech 43, 238–247 (2003)CrossRefGoogle Scholar
  56. 56.
    D.S. Gianola, C. Eberl, Micro- and nanoscale tensile testing of materials. JOM 61(3), 24 (2009)CrossRefGoogle Scholar
  57. 57.
    ASTM, E8/E8M-13, Standard Test Methods for Tension Testing of Metallic Materials (ASTM International, West Conshohocken, PA, 2013)Google Scholar
  58. 58.
    M.D. Uchic et al., Sample dimensions influence strength and crystal plasticity. Science 305(5686), 986–989 (2004)CrossRefGoogle Scholar
  59. 59.
    L.A. Giannuzzi, F.A. Stevie, A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30(3), 197–204 (1999)CrossRefGoogle Scholar
  60. 60.
    D.W. Eastman et al., Benchmarking crystal plasticity models with microtensile evaluation and 3D characterization of René 88DT, in Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys. Wiley Online LibraryGoogle Scholar
  61. 61.
    L. Frey, C. Lehrer, H. Ryssel, Nanoscale effects in focused ion beam processing. Appl. Phys. A 76(7), 1017–1023 (2003)CrossRefGoogle Scholar
  62. 62.
    D.P. Adams et al., Micromilling of metal alloys with focused ion beam–fabricated tools. Precis. Eng. 25(2), 107–113 (2001)CrossRefGoogle Scholar
  63. 63.
    J. Orloff et al., High resolution focused ion beams: FIB and its applications. Phys. Today 57(1), 54–55 (2004)CrossRefGoogle Scholar
  64. 64.
    P.R. Munroe, The application of focused ion beam microscopy in the material sciences. Mater. Charact. 60(1), 2–13 (2009)CrossRefGoogle Scholar
  65. 65.
    K.H. Ho, S.T. Newman, State of the art electrical discharge machining (EDM). Int. J. Mach. Tools Manuf. 43(13), 1287–1300 (2003)CrossRefGoogle Scholar
  66. 66.
    S. Mahendran et al., A review of micro-EDM. Proceedings of the international multi conference of engineers and computer scientists, vol. 2, (2010)Google Scholar
  67. 67.
    R. Bobbili, V. Madhu, A.K. Gogia, Effect of wire-EDM machining parameters on surface roughness and material removal rate of high strength armor steel. Mater. Manuf. Process. 28(4), 364–368 (2013)CrossRefGoogle Scholar
  68. 68.
    Y.S. Liao, J.T. Huang, Y.H. Chen, A study to achieve a fine surface finish in wire-EDM. J. Mater. Process. Technol. 149(1), 165–171 (2004)CrossRefGoogle Scholar
  69. 69.
    R. Ramakrishnan, L. Karunamoorthy, Multi response optimization of wire EDM operations using robust design of experiments. Int. J. Adv. Manuf. Technol. 29(1), 105–112 (2006)CrossRefGoogle Scholar
  70. 70.
    P.S. Rao, K. Ramji, B. Satyanarayana, Experimental investigation and optimization of wire EDM parameters for surface roughness, MRR and white layer in machining of aluminium alloy. Procedia Mater. Sci. 5, 2197–2206 (2014)CrossRefGoogle Scholar
  71. 71.
    Q. Feng et al., Femtosecond laser machining of single-crystal superalloys through thermal barrier coatings. Mater. Sci. Eng. A 430(1), 203–207 (2006)CrossRefGoogle Scholar
  72. 72.
    N.H. Rizvi, Femtosecond laser micromachining: current status and applications. Riken review, 2003: p. 107–112Google Scholar
  73. 73.
    S.K. Slaughter et al., High throughput femtosecond-laser machining of micro-tension specimens, in TMS 2015 144th Annual Meeting & Exhibition, (Springer, New York, NY, 2015)Google Scholar
  74. 74.
    C.B. Schaffer et al., Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt. Lett. 26(2), 93–95 (2001)CrossRefGoogle Scholar
  75. 75.
    M.J. Pfeifenberger et al., The use of femtosecond laser ablation as a novel tool for rapid micro-mechanical sample preparation. Mater. Des. 121, 109–118 (2017)CrossRefGoogle Scholar
  76. 76.
    S.A. Akhmanov, V.A. Vysloukh, A.S. Chirkin, Optics of Femtosecond Laser Pulses (Izdatel Nauka, Moscow, 1988)Google Scholar
  77. 77.
    P.P. Pronko et al., Machining of sub-micron holes using a femtosecond laser at 800 nm. Opt. Commun. 114(1), 106–110 (1995)CrossRefGoogle Scholar
  78. 78.
    D. von der Linde, K. Sokolowski-Tinten, J. Bialkowski, Laser–solid interaction in the femtosecond time regime. Appl. Surf. Sci. 109–110, 1–10 (1997)CrossRefGoogle Scholar
  79. 79.
    D. Perez, L.J. Lewis, Molecular-dynamics study of ablation of solids under femtosecond laser pulses. Phys. Rev. B 67(18), 184102 (2003)CrossRefGoogle Scholar
  80. 80.
    S. Preuss, A. Demchuk, M. Stuke, Sub-picosecond UV laser ablation of metals. Appl. Phys. A 61(1), 33–37 (1995)CrossRefGoogle Scholar
  81. 81.
    M.D. Shirk, P.A. Molian, A review of ultrashort pulsed laser ablation of materials. J. Laser Appl. 10(1), 18–28 (1998)CrossRefGoogle Scholar
  82. 82.
    A. Ostendorf, Femtosecond laser machining, in Technical Digest. CLEO/Pacific Rim 2001. 4th Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.01TH8557), 2001Google Scholar
  83. 83.
    S. Ma et al., Femtosecond laser ablation regimes in a single-crystal superalloy. Metall. Mater. Trans. A 38(13), 2349–2357 (2007)CrossRefGoogle Scholar
  84. 84.
    W. Zhang et al., Femtosecond laser machining characteristics in a single-crystal superalloy. Rare Metals 30(1), 639–642 (2011)CrossRefGoogle Scholar
  85. 85.
    N.G. Semaltianos et al., Femtosecond laser ablation characteristics of nickel-based superalloy C263. Appl. Phys. A 94(4), 999 (2008)CrossRefGoogle Scholar
  86. 86.
    E.G. Gamaly et al., Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics. Phys. Plasmas 9(3), 949–957 (2002)CrossRefGoogle Scholar
  87. 87.
    D. Di Maio, S.G. Roberts, Measuring fracture toughness of coatings using focused-ion-beam-machined microbeams. J. Mater. Res. 20(2), 299–302 (2005)CrossRefGoogle Scholar
  88. 88.
    J. McCarthy et al., FIB micromachined submicron thickness cantilevers for the study of thin film properties. Thin Solid Films 358(1), 146–151 (2000)CrossRefGoogle Scholar
  89. 89.
    D. Kiener et al., FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater. Sci. Eng. A 459(1–2), 262–272 (2007)CrossRefGoogle Scholar
  90. 90.
    J. Sipe et al., Laser-induced periodic surface structure. I. Theory. Phys. Rev. B 27(2), 1141 (1983)CrossRefGoogle Scholar
  91. 91.
    J. Bonse et al., Femtosecond laser-induced periodic surface structures. J. Laser Appl. 24(4), 042006 (2012)CrossRefGoogle Scholar
  92. 92.
    R. Hill, Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11(5), 357–372 (1963)CrossRefGoogle Scholar
  93. 93.
    M.P. Echlin, W.C. Lenthe, T.M. Pollock, Three-dimensional sampling of material structure for property modeling and design. Int. Mater. Manuf. Innov. 3(1), 21 (2014)Google Scholar
  94. 94.
    A. Ma, F. Roters, D. Raabe, A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations. Acta Mater. 54(8), 2169–2179 (2006)CrossRefGoogle Scholar
  95. 95.
    M.D. Uchic, D.M. Dimiduk, A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Mater. Sci. Eng. A 400-401, 268–278 (2005)CrossRefGoogle Scholar
  96. 96.
    C.H. Suh, Y.-C. Jung, Y.S. Kim, Effects of thickness and surface roughness on mechanical properties of aluminum sheets. J. Mech. Sci. Technol. 24(10), 2091–2098 (2010)CrossRefGoogle Scholar
  97. 97.
    S. Miyazaki, K. Shibata, H. Fujita, Effect of specimen thickness on mechanical properties of polycrystalline aggregates with various grain sizes. Acta Metall. 27(5), 855–862 (1979)CrossRefGoogle Scholar
  98. 98.
    S. Chauhan, A.F. Bastawros, Probing thickness-dependent dislocation storage in freestanding cu films using residual electrical resistivity. Appl. Phys. Lett. 93(4), 041901 (2008)CrossRefGoogle Scholar
  99. 99.
    P. Ghosh, A.H. Chokshi, Size effects on strength in the transition from single-to-polycrystalline behavior. Metall. Mater. Trans. A 46(12), 5671–5684 (2015)CrossRefGoogle Scholar
  100. 100.
    N.L. Okamoto et al., Specimen-and grain-size dependence of compression deformation behavior in nanocrystalline copper. Int. J. Plast. 56, 173–183 (2014)CrossRefGoogle Scholar
  101. 101.
    C.-J. Wang et al., Plastic deformation size effects in micro-compression of pure nickel with a few grains across diameter. Mater. Sci. Eng. A 636, 352–360 (2015)CrossRefGoogle Scholar
  102. 102.
    X.W. Gu et al., Size-dependent deformation of nanocrystalline Pt nanopillars. Nano Lett. 12(12), 6385–6392 (2012)CrossRefGoogle Scholar
  103. 103.
    T. Tsuchiya et al., Specimen size effect on tensile strength of surface-micromachined polycrystalline silicon thin films. J. Microelectromech. Syst. 7(1), 106–113 (1998)CrossRefGoogle Scholar
  104. 104.
    R. Wheeler, P. Shade, M. Uchic, Insights gained through image analysis during in situ micromechanical experiments. JOM 64(1), 58–65 (2012)CrossRefGoogle Scholar
  105. 105.
    P. Shade et al., A combined experimental and simulation study to examine lateral constraint effects on microcompression of single-slip oriented single crystals. Acta Mater. 57(15), 4580–4587 (2009)CrossRefGoogle Scholar
  106. 106.
    S.T. Wlodek, M. Kelly, D.A. Alden, The Structure of René 88DT, 1996, pp. 129–136Google Scholar
  107. 107.
    J. Stinville et al., Sub-grain scale digital image correlation by electron microscopy for polycrystalline materials during elastic and plastic deformation. Exp. Mech. 56(2), 197–216 (2016)CrossRefGoogle Scholar
  108. 108.
    D.D. Krueger, R.D. Kissinger, R.G. Menzies, Development and introduction of a damage tolerant high temperature nickel-base disk alloy, René 88DT, in Superalloys 1992: Proceedings of the 7th International Symposium of Superalloys, 1992Google Scholar
  109. 109.
    A. Bagri et al., Microstructure and property-based statistically equivalent representative volume elements for polycrystalline Ni-based superalloys containing annealing twins. Metall. Mater. Trans. A 49(11), 5727–5744 (2018)CrossRefGoogle Scholar
  110. 110.
    Z. Alam et al., Microstructural aspects of fatigue crack initiation and short crack growth in René 88DT, in Superalloys 2016: Proceedings of the 13th International Symposium of Superalloys, (Wiley, Hoboken), p. 2016Google Scholar
  111. 111.
    W.C. Lenthe et al., Prediction of fatigue-initiating twin boundaries in polycrystalline nickel superalloys informed by TriBeam tomography. Microsc. Microanal. 22, 1732 (2016)CrossRefGoogle Scholar
  112. 112.
    J.C. Stinville et al., Measurement of strain localization resulting from monotonic and cyclic loading at 650 °C in nickel base superalloys. Exp. Mech. 57(8), 1289–1309 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Materials and Manufacturing DirectorateAir Force Research Laboratory, Wright-Patterson AFBDaytonUSA

Personalised recommendations