Advertisement

Geometric Modeling of Transverse Cracking of Composites

  • Angel Agrawal
  • Scott Zacek
  • Kyle Nixon
  • Chris Montgomery
  • Philippe GeubelleEmail author
  • Nancy Sottos
  • Craig Przybyla
  • George Jefferson
Chapter
  • 55 Downloads

Abstract

This manuscript presents a computationally efficient method based on a geometric model to simulate the transverse cracking of a 90 cross-ply in a composite laminate. The model expands on existing homogenized solutions of transverse cracking by accounting for the random microstructure of the transverse ply extracted from optical micrographs of a hybrid [0∕90∕0]T glass/carbon/epoxy composite laminate. The chapter summarizes the three steps of the method, which allows to model the creation of multiple transverse cracks in realistic transverse plies composed of tens of thousands of fibers. The model is calibrated against experimental measurements of the critical values of the applied transverse strain corresponding to the appearance of transverse cracks and then used in a statistical analysis of the impact of the interface strength distribution on the evolution of the transverse cracking process.

Keywords

Transverse cracking Carbon-epoxy composites Composite laminate Interfacial failure Mesoscale modeling Shear-lag theory Virtual microstructure model Weibull distribution Transverse crack shielding Statistical analysis Acoustic emission 

Notes

Acknowledgements

This work has been supported through a grant No. FA9550-12-1-0445 to the Center of Excellence on Integrated Materials Modeling (CEIMM) at Johns Hopkins University (partners JHU, UIUC, UCSB), awarded by the AFOSR/RSL (Computational Mathematics Program, Manager Dr. A. Sayir) and AFRL/RX (Monitors Dr. C. Woodward and C. Przybyla).

References

  1. 1.
    P.K. Mallick, Fiber Reinforced Composites: Materials, Manufacturing, and Design, 3rd edn. (CRC Press, Boca Raton, FL, 2007)CrossRefGoogle Scholar
  2. 2.
    C. Montgomery, Multiscale characterization of carbon fiber-reinforced epoxy composites. Ph.D. thesis, Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign (2018)Google Scholar
  3. 3.
    S. Zacek, D. Brandyberry, A. Klepacki, C. Montgomery, M. Shakiba, M. Rossol, A. Najafi, X. Zhang, N. Sottos, P. Geubelle, C. Przybyla, G. Jefferson, Transverse failure of unidirectional composites: sensitivity to interfacial properties, in Advancing Computational and Experimental Methods for Integrated Computational Materials Engineering (ICME), co-ed. by S. Ghosh, C. Przybyla, C. Woodward (Springer, New York, 2020)Google Scholar
  4. 4.
    M. Shakiba, D. Brandyberry, S. Zacek, P. Geubelle, Transverse failure of carbon fiber composites: analytical sensitivity to the distribution of fiber/matrix interface properties. Int. J. Numer. Methods Eng. 89, 650–665 (2019)CrossRefGoogle Scholar
  5. 5.
    X. Zhang, D. Brandyberry, P. Geubelle, Igfem-based shape sensitivity analysis of the transverse failure of a composite laminate. Comput. Mech. 64(5), 1455–1472 (2019)CrossRefGoogle Scholar
  6. 6.
    K. Garrett, J. Bailey, Multiple transverse fracture in 90 cross-ply laminates of a glass fibre-reinforced polyester. J. Mater. Sci. 12, 157–168 (1977)CrossRefGoogle Scholar
  7. 7.
    A. Parvizi, J. Bailey, On multiple transverse cracking in glass fibre epoxy cross-ply laminates. J. Mater. Sci. 13(10), 2131–2136 (1978)CrossRefGoogle Scholar
  8. 8.
    S. Kirkpatrick, C. Gelatt Jr, M.P. Vecchi, Optimization by simulated annealing. Science 220(4598), 671–680 (1983)CrossRefGoogle Scholar
  9. 9.
    S. Zacek, Exploring the link between microstructure statistics and transverse ply fracture in carbon/epoxy composites. Master’s thesis, University of Illinois – Urbana-Champaign (2017)Google Scholar
  10. 10.
    M. Safdari, A.R. Najafi, N.R. Sottos, P.H. Geubelle, A nurbs-based interface-enriched generalized finite element method for problems with complex discontinuous gradient fields. Int. J. Numer. Methods Eng. 101(12), 950–964 (2015)CrossRefGoogle Scholar
  11. 11.
    J. Goodier, Concentration of stress around spherical and cylindrical inclusions and flaws. TASME 55, 39 (1933)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Angel Agrawal
    • 1
  • Scott Zacek
    • 1
  • Kyle Nixon
    • 1
  • Chris Montgomery
    • 2
  • Philippe Geubelle
    • 1
    Email author
  • Nancy Sottos
    • 2
  • Craig Przybyla
    • 3
  • George Jefferson
    • 3
  1. 1.Department of Aerospace EngineeringUniversity of IllinoisUrbanaUSA
  2. 2.Department of Materials Science and EngineeringUniversity of IllinoisUrbanaUSA
  3. 3.Air Force Research Laboratory/RXWright-Patterson Air Force BaseDaytonUSA

Personalised recommendations