Stiffness and Hepatocytes Function In Vitro

  • Srivatsan KidambiEmail author


Liver fibrosis is a wound-healing response to chronic liver injury such as alcoholic/nonalcoholic fatty liver disease, and viral hepatitis with no FDA-approved treatments. Liver fibrosis results in a continual accumulation of extracellular matrix (ECM) proteins and paves the way for replacement of parenchyma with non-functional scar tissue. During liver fibrosis, alterations in hepatocytes phenotype including apoptosis, oxidative stress, and loss of metabolic function have been shown to precede fibrosis and promote hepatic stellate cell activation. Specifically, hepatocyte death, as part of the original injury, triggers a cascade of events, including pathological accumulation of ECM leading to the increased tissue stiffness during liver injury. This chapter provides an overview of the interplay of hepatocytes with stiffness using in vitro models mimicking physiological and pathological matrix rigidity to provide insight into the pivotal changes in hepatocytes physiology and the extent to which it mediates the progression of liver fibrosis. Establishing the molecular aspects of hepatocytes in the light of fibrotic liver stiffness is valuable towards development of novel therapeutic and diagnostic targets of liver fibrosis.


Liver stiffness Hepatocytes Fibrosis Metabolism Matrix Bio-mimetic models Mechanotransduction Mechanosensors Matrix Collagen Polydimethylsiloxane 


  1. 1.
    Asrani SK, Larson JJ, Yawn B, Therneau TM, Kim WR. Underestimation of liver-related mortality in the United States. Gastroenterology. 2013;145(2):375–82.e1–2.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Liver disease in Europe. Lancet. 2013;381(9866):508.Google Scholar
  3. 3.
    Iredale JP, Thompson A, Henderson NC. Extracellular matrix degradation in liver fibrosis: biochemistry and regulation. Biochim Biophys Acta. 2013;1832(7):876–83.PubMedCrossRefGoogle Scholar
  4. 4.
    Mederacke I. Liver fibrosis—mouse models and relevance in human liver diseases. Z Gastroenterol. 2013;51(1):55–62.PubMedCrossRefGoogle Scholar
  5. 5.
    Ramachandran P, Iredale JP. Liver fibrosis: a bidirectional model of fibrogenesis and resolution. QJM. 2012;105(9):813–7.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Foucher J, Chanteloup E, Vergniol J, Castera L, Le Bail B, Adhoute X, et al. Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study. Gut. 2006;55(3):403–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Georges PC, Hui JJ, Gombos Z, McCormick ME, Wang AY, Uemura M, et al. Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am J Physiol Gastrointest Liver Physiol. 2007;293(6):G1147–54.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Yin M, Kolipaka A, Woodrum DA, Glaser KJ, Romano AJ, Manduca A, et al. Hepatic and splenic stiffness augmentation assessed with MR elastography in an in vivo porcine portal hypertension model. J Magn Reson Imaging. 2013;38(4):809–15.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Yin M, Talwalkar JA, Glaser KJ, Manduca A, Grimm RC, Rossman PJ, et al. Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol. 2007;5(10):1207–13.e2.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Takeda T, Yasuda T, Nakayama Y, Nakaya M, Kimura M, Yamashita M, et al. Usefulness of noninvasive transient elastography for assessment of liver fibrosis stage in chronic hepatitis C. World J Gastroenterol. 2006;12(48):7768–73.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Mueller S, Sandrin L. Liver stiffness: a novel parameter for the diagnosis of liver disease. Hepat Med. 2010;2:49–67.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Henderson NC, Forbes SJ. Hepatic fibrogenesis: from within and outwith. Toxicology. 2008;254(3):130–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Lozoya OA, Wauthier E, Turner RA, Barbier C, Prestwich GD, Guilak F, et al. Regulation of hepatic stem/progenitor phenotype by microenvironment stiffness in hydrogel models of the human liver stem cell niche. Biomaterials. 2011;32(30):7389–402.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology. 2008;47(4):1394–400.PubMedCrossRefGoogle Scholar
  15. 15.
    Arias I, Wolkoff A, Boyer J, Shafritz D, Fausto N, Alter H, et al. The liver: biology and pathobiology. Chichester: Wiley; 2011.Google Scholar
  16. 16.
    Arias IM, Boyer J, Shafritz D, Fausto N, Alter H, Cohen DE, Wolkoff A. The liver: biology and pathology. Hoboken: Wiley Blackwell; 2010. 1216 p.Google Scholar
  17. 17.
    Rouiller C. The liver: morphology, biochemistry, physiology. New York: Academic; 2013.Google Scholar
  18. 18.
    Zakim D, Boyer T, Hepatology A. Textbook of liver disease. Philadelphia: WB Saunders Company; 1996.Google Scholar
  19. 19.
    Pinzani M, Marra F, Carloni V. Signal transduction in hepatic stellate cells. Liver. 1998;18(1):2–13.PubMedCrossRefGoogle Scholar
  20. 20.
    Van den Eynden GG, Majeed AW, Illemann M, Vermeulen PB, Bird NC, Høyer-Hansen G, et al. The multifaceted role of the microenvironment in liver metastasis: biology and clinical implications. Cancer Res. 2013;73(7):2031–43.PubMedCrossRefGoogle Scholar
  21. 21.
    Kidambi S, Yarmush RS, Novik E, Chao P, Yarmush ML, Nahmias Y. Oxygen-mediated enhancement of primary hepatocyte metabolism, functional polarization, gene expression, and drug clearance. Proc Natl Acad Sci. 2009;106(37):15714–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Bhatia S, Balis U, Yarmush M, Toner M. Effect of cell–cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J. 1999;13(14):1883–900.PubMedCrossRefGoogle Scholar
  23. 23.
    Uygun BE, Soto-Gutierrez A, Yagi H, Izamis M-L, Guzzardi MA, Shulman C, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16(7):814–20.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Wong SF, Choi YY, Kim DS, Chung BG, Lee S-H. Concave microwell based size-controllable hepatosphere as a three-dimensional liver tissue model. Biomaterials. 2011;32(32):8087–96.PubMedCrossRefGoogle Scholar
  25. 25.
    Bhandari RN, Riccalton LA, Lewis AL, Fry JR, Hammond AH, Tendler SJ, et al. Liver tissue engineering: a role for co-culture systems in modifying hepatocyte function and viability. Tissue Eng. 2001;7(3):345–57.PubMedCrossRefGoogle Scholar
  26. 26.
    Kidambi S, Sheng LF, Yarmush ML, Toner M, Lee I, Chan C. Patterned co-culture of primary hepatocytes and fibroblasts using polyelectrolyte multilayer templates. Macromol Biosci. 2007;7(3):344–53.PubMedCrossRefGoogle Scholar
  27. 27.
    Kidambi S, Lee I, Chan C. Controlling primary hepatocyte adhesion and spreading on protein-free polyelectrolyte multilayer films. J Am Chem Soc. 2004;126(50):16286–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115(2):209–18.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Friedman SL. Liver fibrosis–from bench to bedside. J Hepatol. 2003;38:38–53.CrossRefGoogle Scholar
  30. 30.
    Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol. 2011;6:425–56.PubMedCrossRefGoogle Scholar
  31. 31.
    Mammoto T, Ingber DE. Mechanical control of tissue and organ development. Development. 2010;137(9):1407–20.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ferraioli G, Tinelli C, Dal Bello B, Zicchetti M, Filice G, Filice C. Accuracy of real-time shear wave elastography for assessing liver fibrosis in chronic hepatitis C: a pilot study. Hepatology. 2012;56(6):2125–33.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Friedrich-Rust M, Ong MF, Martens S, Sarrazin C, Bojunga J, Zeuzem S, et al. Performance of transient elastography for the staging of liver fibrosis: a meta-analysis. Gastroenterology. 2008;134(4):960–74.e8.CrossRefGoogle Scholar
  34. 34.
    Yin M, Woollard J, Wang X, Torres VE, Harris PC, Ward CJ, et al. Quantitative assessment of hepatic fibrosis in an animal model with magnetic resonance elastography. Magn Reson Med. 2007;58(2):346–53.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Wang H-B, Dembo M, Wang Y-L. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am J Physiol Cell Physiol. 2000;279(5):C1345–C50.PubMedCrossRefGoogle Scholar
  36. 36.
    Hsiong SX, Carampin P, Kong HJ, Lee KY, Mooney DJ. Differentiation stage alters matrix control of stem cells. J Biomed Mater Res A. 2008;85(1):145–56.PubMedCrossRefGoogle Scholar
  37. 37.
    Park JS, Chu JS, Tsou AD, Diop R, Tang Z, Wang A, et al. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β. Biomaterials. 2011;32(16):3921–30.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310(5751):1139–43.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ingber DE. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 2006;20(7):811–27.PubMedCrossRefGoogle Scholar
  40. 40.
    McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6(4):483–95.PubMedCrossRefGoogle Scholar
  41. 41.
    Desmoulière A, Darby I, Costa A, Raccurt M, Tuchweber B, Sommer P, et al. Extracellular matrix deposition, lysyl oxidase expression, and myofibroblastic differentiation during the initial stages of cholestatic fibrosis in the rat. Lab Invest. 1997;76(6):765–78.PubMedGoogle Scholar
  42. 42.
    Brenner DA, Waterboer T, Choi SK, Lindquist JN, Stefanovic B, Burchardt E, et al. New aspects of hepatic fibrosis. J Hepatol. 2000;32:32–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Li Z, Dranoff JA, Chan EP, Uemura M, Sevigny J, Wells RG. Transforming growth factor-beta and substrate stiffness regulate portal fibroblast activation in culture. Hepatology. 2007;46(4):1246–56.PubMedCrossRefGoogle Scholar
  44. 44.
    Sakata R, Ueno T, Nakamura T, Ueno H, Sata M. Mechanical stretch induces TGF-β synthesis in hepatic stellate cells. Eur J Clin Investig. 2004;34(2):129–36.CrossRefGoogle Scholar
  45. 45.
    Zeisberg M, Yang C, Martino M, Duncan MB, Rieder F, Tanjore H, et al. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem. 2007;282(32):23337–47.PubMedCrossRefGoogle Scholar
  46. 46.
    Schrader J, Gordon-Walker TT, Aucott RL, van Deemter M, Quaas A, Walsh S, et al. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology. 2011;53(4):1192–205.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Tateno C, Yoshizato K. Long-term cultivation of adult rat hepatocytes that undergo multiple cell divisions and express normal parenchymal phenotypes. Am J Pathol. 1996;148(2):383.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Clayton DF, Darnell J. Changes in liver-specific compared to common gene transcription during primary culture of mouse hepatocytes. Mol Cell Biol. 1983;3(9):1552–61.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 2006;7(3):211–24.PubMedCrossRefGoogle Scholar
  50. 50.
    Sawada H, Takami K, Asahi S. A toxicogenomic approach to drug-induced phospholipidosis: analysis of its induction mechanism and establishment of a novel in vitro screening system. Toxicol Sci. 2005;83(2):282–92.PubMedCrossRefGoogle Scholar
  51. 51.
    Natarajan V, Berglund EJ, Chen DX, Kidambi S. Substrate stiffness regulates primary hepatocyte functions. RSC Adv. 2015;5(99):80956–66.CrossRefGoogle Scholar
  52. 52.
    Dunn JC, Yarmush ML, Koebe HG, Tompkins RG. Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration. FASEB J. 1989;3(2):174–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Youssef J, Chen P, Shenoy VB, Morgan JR. Mechanotransduction is enhanced by the synergistic action of heterotypic cell interactions and TGF-β1. FASEB J. 2012;26(6):2522–30.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    You J, Park SA, Shin DS, Patel D, Raghunathan VK, Kim M, et al. Characterizing the effects of heparin gel stiffness on function of primary hepatocytes. Tissue Eng Part A. 2013;19(23–24):2655–63.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    LeCluyse E, Bullock P, Madan A, Carroll K, Parkinson A. Influence of extracellular matrix overlay and medium formulation on the induction of cytochrome P-450 2B enzymes in primary cultures of rat hepatocytes. Drug Metab Dispos. 1999;27(8):909–15.PubMedGoogle Scholar
  56. 56.
    Lin P, Chan WC, Badylak SF, Bhatia SN. Assessing porcine liver-derived biomatrix for hepatic tissue engineering. Tissue Eng. 2004;10(7–8):1046–53.PubMedCrossRefGoogle Scholar
  57. 57.
    Guillouzo A. Liver cell models in in vitro toxicology. Environ Health Perspect. 1998;106(Suppl 2):511–32.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Perepelyuk M, Chin L, Cao X, van Oosten A, Shenoy VB, Janmey PA, et al. Normal and fibrotic rat livers demonstrate shear strain softening and compression stiffening: a model for soft tissue mechanics. PLoS One. 2016;11(1):e0146588.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Zustiak S, Nossal R, Sackett DL. Multiwell stiffness assay for the study of cell responsiveness to cytotoxic drugs. Biotechnol Bioeng. 2014;111(2):396–403.PubMedCrossRefGoogle Scholar
  60. 60.
    Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton. 2005;60(1):24–34.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.PubMedCrossRefGoogle Scholar
  62. 62.
    Regehr KJ, Domenech M, Koepsel JT, Carver KC, Ellison-Zelski SJ, Murphy WL, et al. Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip. 2009;9(15):2132–9.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Deegan DB, Zimmerman C, Skardal A, Atala A, Shupe TD. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology. J Mech Behav Biomed Mater. 2015;55:87–103.PubMedCrossRefGoogle Scholar
  64. 64.
    Xia T, Zhao R, Liu W, Huang Q, Chen P, Waju YN, et al. Effect of substrate stiffness on hepatocyte migration and cellular Young’s modulus. J Cell Physiol. 2018;233(9):6996–7006.PubMedCrossRefGoogle Scholar
  65. 65.
    Mata A, Fleischman AJ, Roy S. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed Microdevices. 2005;7(4):281–93.PubMedCrossRefGoogle Scholar
  66. 66.
    Dario P, Carrozza MC, Benvenuto A, Menciassi A. Micro-systems in biomedical applications. J Micromech Microeng. 2000;10(2):235.CrossRefGoogle Scholar
  67. 67.
    Tzvetkova-Chevolleau T, Stéphanou A, Fuard D, Ohayon J, Schiavone P, Tracqui P. The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials. 2008;29(10):1541–51.PubMedCrossRefGoogle Scholar
  68. 68.
    Natarajan V, Moeller M, Casey CA, Harris EN, Kidambi S. Matrix Stiffness Regulates Liver Sinusoidal Endothelial Cell Function Mimicking Responses in Fatty Liver Disease. bioRXiv, 2020,
  69. 69.
    Daverey A, Mytty A, Kidambi S. Topography mediated regulation of HER-2 expression in breast cancer cells. Nano LIFE. 2012;2(3):1241009.CrossRefGoogle Scholar
  70. 70.
    Kidambi S, Udpa N, Schroeder SA, Findlan R, Lee I, Chan C. Cell adhesion on polyelectrolyte multilayer coated polydimethylsiloxane surfaces with varying topographies. Tissue Eng. 2007;13(8):2105–17.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Huang X, Hang R, Wang X, Lin N, Zhang X, Tang B. Matrix stiffness in three-dimensional systems effects on the behavior of C3A cells. Artif Organs. 2013;37(2):166–74.PubMedCrossRefGoogle Scholar
  72. 72.
    Ben-Ze’ev A, Robinson GS, Bucher N, Farmer SR. Cell-cell and cell-matrix interactions differentially regulate the expression of hepatic and cytoskeletal genes in primary cultures of rat hepatocytes. Proc Natl Acad Sci. 1988;85(7):2161–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Mooney D, Hansen L, Vacanti J, Langer R, Farmer S, Ingber D. Switching from differentiation to growth in hepatocytes: control by extracellular matrix. J Cell Physiol. 1992;151(3):497–505.PubMedCrossRefGoogle Scholar
  74. 74.
    Hansen LK, Wilhelm J, Fassett JT. Regulation of hepatocyte cell cycle progression and differentiation by type I collagen structure. Curr Top Dev Biol. 2006;72:205–36, 1 plate.PubMedCrossRefGoogle Scholar
  75. 75.
    Fassett J, Tobolt D, Hansen LK. Type I collagen structure regulates cell morphology and EGF signaling in primary rat hepatocytes through cAMP-dependent protein kinase A. Mol Biol Cell. 2005;17(1):345–56.PubMedCrossRefGoogle Scholar
  76. 76.
    Nagaki M, Sugiyama A, Naiki T, Ohsawa Y, Moriwaki H. Control of cyclins, cyclin-dependent kinase inhibitors, p21 and p27, and cell cycle progression in rat hepatocytes by extracellular matrix. J Hepatol. 2000;32(3):488–96.PubMedCrossRefGoogle Scholar
  77. 77.
    Nagaki M, Shidoji Y, Yamada Y, Sugiyama A, Tanaka M, Akaike T, et al. Regulation of hepatic genes and liver transcription factors in rat hepatocytes by extracellular matrix. Biochem Biophys Res Commun. 1995;210(1):38–43.PubMedCrossRefGoogle Scholar
  78. 78.
    DiPersio CM, Jackson DA, Zaret KS. The extracellular matrix coordinately modulates liver transcription factors and hepatocyte morphology. Mol Cell Biol. 1991;11(9):4405–14.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Brill S, Zvibel I, Halpern Z, Oren R. The role of fetal and adult hepatocyte extracellular matrix in the regulation of tissue-specific gene expression in fetal and adult hepatocytes. Eur J Cell Biol. 2002;81(1):43–50.PubMedCrossRefGoogle Scholar
  80. 80.
    Desai SS, Tung JC, Zhou VX, Grenert JP, Malato Y, Rezvani M, et al. Physiological ranges of matrix rigidity modulate primary mouse hepatocyte function in part through hepatocyte nuclear factor 4 alpha. Hepatology. 2016;64(1):261–75.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Wilson CL, Hayward SL, Kidambi S. Astrogliosis in a dish: substrate stiffness induces astrogliosis in primary rat astrocytes. RSC Adv. 2016;6(41):34447–57.CrossRefGoogle Scholar
  82. 82.
    Cozzolino AM, Noce V, Battistelli C, Marchetti A, Grassi G, Cicchini C, et al. Modulating the substrate stiffness to manipulate differentiation of resident liver stem cells and to improve the differentiation state of hepatocytes. Stem Cells Int. 2016;2016:5481493.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Chen AA, Khetani SR, Lee S, Bhatia SN, Van Vliet KJ. Modulation of hepatocyte phenotype in vitro via chemomechanical tuning of polyelectrolyte multilayers. Biomaterials. 2009;30(6):1113–20.PubMedCrossRefGoogle Scholar
  84. 84.
    Semler EJ, Lancin PA, Dasgupta A, Moghe PV. Engineering hepatocellular morphogenesis and function via ligand-presenting hydrogels with graded mechanical compliance. Biotechnol Bioeng. 2005;89(3):296–307.PubMedCrossRefGoogle Scholar
  85. 85.
    Xia T, Zhao R, Feng F, Song Y, Zhang Y, Dong L, et al. Gene expression profiling of human hepatocytes grown on differing substrate stiffness. Biotechnol Lett. 2018;40(5):809–18.PubMedCrossRefGoogle Scholar
  86. 86.
    Bowler BE. Thermodynamics of protein denatured states. Mol BioSyst. 2007;3(2):88–99.PubMedCrossRefGoogle Scholar
  87. 87.
    Battle AR, Ridone P, Bavi N, Nakayama Y, Nikolaev YA, Martinac B. Lipid-protein interactions: lessons learned from stress. Biochim Biophys Acta. 2015;1848(9):1744–56.PubMedCrossRefGoogle Scholar
  88. 88.
    Bordeleau F, Califano JP, Negron Abril YL, Mason BN, LaValley DJ, Shin SJ, et al. Tissue stiffness regulates serine/arginine-rich protein-mediated splicing of the extra domain B-fibronectin isoform in tumors. Proc Natl Acad Sci U S A. 2015;112(27):8314–9.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Saha K, Kim J, Irwin E, Yoon J, Momin F, Trujillo V, et al. Surface creasing instability of soft polyacrylamide cell culture substrates. Biophys J. 2010;99(12):L94–6.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Moeller M, Thulasingam S, Narasimhan M, Kidambi S. Stiffness Induces NAFLD-Like Metabolic Dysfunction in Primary Hepatocytes, Hepatology. 2019;70:119A.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of NebraskaLincolnUSA
  2. 2.Fred and Pamela Buffett Cancer Center, University of Nebraska Medical CenterOmahaUSA
  3. 3.Nebraska Center for Integrated Biomolecular Communication, University of NebraskaLincolnUSA
  4. 4.Nebraska Center for the Prevention of Obesity Diseases, University of NebraskaLincolnUSA
  5. 5.Nebraska Center for Materials and Nanoscience, University of NebraskaLincolnUSA
  6. 6.Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations