Schemes for Verification of Resources in the Cloud: Comparison of the Cloud Technology Providers

  • Adam SulichEmail author
  • Tomasz Zema
  • Piotr Zema
Part of the Studies in Computational Intelligence book series (SCI, volume 887)


Cloud technology providers differ from each other not only by the level of their computing cloud abstraction level but also by different computing environment conditions. The most efficient, one-use verification scheme is a hash-based function scheme that processes the entire single file per single-use. Data possession verification schemes are feasible even on mobile devices. One solution for single-use would be to delegate cyclical verification to a private server or other cloud computing. Response times to challenges can be used as proof of having resources such as computing power. Due to the powerful computing and storage, high availability and security, easy accessibility and adaptability, reliable scalability and interoperability, cost and time effective cloud computing is the top, needed for the current fast-growing business world. This work provides classification, which may help to survey of several existing cloud computing services developed by various projects globally such as Amazon, Google, Azure, Open Stack and Eucalyptus. Similarities and differences in the architecture approaches of cloud computing were identified in this chapter.


Cloud computing Industry 4.0 Reliability management 



The project is financed by the Ministry of Science and Higher Education in Poland under the programme “Regional Initiative of Excellence” 2019–2022 project number 015/RID/2018/19 total funding amount 10,721,040.00 PLN.


  1. 1.
    Przysucha, Ł. (2016). Content management systems based on GNU GPL license as a support of knowledge management in organizations and business. In IFIP Advances in Information and Communication Technology.Google Scholar
  2. 2.
    Niemczyk, J., Kośny, M., Organa, M., & Trzaska, R. (2018). Inteligentne usługi dla przemysłu 4.0.Google Scholar
  3. 3.
    Perechuda, K., & Sobińska, M. (2015). Challenges for knowledge management in the context of IT global sourcing models implementation. In E. Mercier-Laurent, M. L. Owoc, & D. Boulanger (Eds.), Artificial intelligence for knowledge management. Second IFIP WG 12.6 international workshop, AI4KM 2014, (pp. 58–74). Warsaw, Poland: Revised Selected Papers. Springer, 7–10 Sept 2014.Google Scholar
  4. 4.
    Przysucha, Ł. (2018). Internet platform for city dwellers based on open source system. In IFIP Advances in Information and Communication Technology.Google Scholar
  5. 5.
    Sulich, A. (2015). Entrepreneurship among the students of Wroclaw University of Technology. W: Centr predprinimatel’stva [i in.] (red) Kompetentnostnyj podhod v obučenii predprinimatel’tsvu v organizaciâh vysšego i srednego professional’nogo obrazovaniâ : meždunarodnaâ konferenciâ - sbornik tezisov dokladov. Moskwa, ss 1–13.Google Scholar
  6. 6.
    Qin, J., Liu, Y., & Grosvenor, R. (2016). A categorical framework of manufacturing for industry 4.0 and beyond. In Procedia CIRP.Google Scholar
  7. 7.
    Rothe, R., Rutkowska, M., & Sulich, A. (2018). Smart cities and challenges for European integration. In Proceedings of the 4th International Conference on European Integration 2018, ICEI 2018, (vol. 3, pp. 1240–1246)  17–18 May 2018. Ostrava, Czech Republic.Google Scholar
  8. 8.
    Michalski, G., Rutkowska, M., Sulich, A., & Rothe, R. (2018). The green jobs and the industry 4.0. In M. Dziura, A. Jaki, & T. Rojek (Eds.), Enterprises and economies in the face of contemporary challenges: management—restructuring—innovation (pp. 321–329). Fundacja Uniwersytetu Ekonomicznego w Krakowie, Kraków.Google Scholar
  9. 9.
    Kolberg, D., & Zühlke, D. (2015). Lean automation enabled by industry 4.0 technologies. In IFAC-Papers on Line.Google Scholar
  10. 10.
    Hofmann, J. (2017). Industrie 4.0. In: CNC-Handbuch.Google Scholar
  11. 11.
    Hale, T., & Roger, C. (2014). Orchestration and transnational climate governance. The Review of International Organizations. Scholar
  12. 12.
    Stańczyk-Hugiet, E. (2009). Knowledge-based processes—A strategic perspective. Argumenta Oeconomica.Google Scholar
  13. 13.
    Olszak, C., & Mach-Król, M. (2018). A conceptual framework for assessing an organization’s readiness to adopt big data. Sustainability, 10. Scholar
  14. 14.
    Krzywiecki, L., Majcher, K., & Macyna, W. (2016). Efficient probabilistic methods for proof of possession in clouds. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Scholar
  15. 15.
    Lele, A. (2019). Cloud computing. Smart Innovation, Systems and Technologies, 167–185.Google Scholar
  16. 16.
    Grobelny, J., & Michalski, R. (2018). Simulated annealing based on linguistic patterns: Experimental examination of properties for various types of logistic problems. Advances in Intelligent Systems and Computing.Google Scholar
  17. 17.
    Industrie 4.0 Working Group. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0.Google Scholar
  18. 18.
    Srivastava, P., & Khan, R. (2018). A review paper on cloud computing. International Journal of Advanced Research in Computer Science and Software Engineering, 8, 17–20. Scholar
  19. 19.
    Stańczyk-Hugiet, E., Piórkowska, K., & Stańczyk, S. (2017). Demystifying emergence of organizational routines. Journal of Organizational Change Management.Google Scholar
  20. 20.
    Niemczyk, J., & Stańczyk-Hugiet, E. (2014). Cooperative and competitive relationships in high education sector in Poland. Journal of Economics and Management.Google Scholar
  21. 21.
    Krzywiecki, Ł., & Kutyłowski, M. (2012). Proof of possession for cloud storage via lagrangian interpolation techniques. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).Google Scholar
  22. 22.
    Zhou, K., Liu, T., & Zhou, L. (2016). Industry 4.0: Towards future industrial opportunities and challenges. In 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2015.Google Scholar
  23. 23.
    Nowotarski, J., & Weron, R. (2015). Computing electricity spot price prediction intervals using quantile regression and forecast averaging. Computational Statistics. Scholar
  24. 24.
    Lunt, B. (2012). How long is long-term data storage?. Provo, UT, USA: Brigham Young University.Google Scholar
  25. 25.
    Choroś, K., & Krzywiecki, Ł. (1998). Tworzenie wirtualnej rzeczywistości sieciowej za pomocą specyfikacji VRML na przykładzie multimedialnego systemu „ « Zabytki Wrocławia»”. W: Multimedialne i sieciowe systemy informacyjne. [I Krajowa konferencja]. Materiały konferencyjne, [Wrocław, 17–18 września 1998]. ss 101–108.Google Scholar
  26. 26.
    Rola, P., Kuchta, D., & Kopczyk, D. (2016). Conceptual model of working space for Agile (Scrum) project team. Journal of Systems and Software. Scholar
  27. 27.
    Stańczyk-Hugiet, E. (2019). Interfirm relationships: Evolutionary perspective. Ekonomika. Scholar
  28. 28.
    Cichoń, J., Krzywiecki, Ł., Kutyłowski, M., & Wlaź, P. (2006). Anonymous distribution of encryption keys in cellular broadcast systems. Lecture Notes in Computer Science, 4074, 96–109. Scholar
  29. 29.
    Sanders, A., Elangeswaran, C., Wulfsberg, J. (2016). Industry 4.0 implies lean manufacturing: Research activities in industry 4.0 function as enablers for lean manufacturing. Journal of Industrial Engineering and Management. Scholar
  30. 30.
    Malara, Z., & Rzęchowski, J. (2011). Informacja rynkowa w gospodarce globalnej. Zarządzanie Inf na Rynk Glob Teor i Prakt.Google Scholar
  31. 31.
    Frączkowski, K., Gładysz, B., Mazur, H., & Prałat, E. (2019). Behavioural aspects of communication in the management process of IT projects. Advances in Intelligent Systems and Computing.Google Scholar
  32. 32.
    Hanzlik, L., Kluczniak, K. K., Kutyłowski, M., & Krzywiecki, Ł. (2014). Mutual restricted identification. In Public Key Infrastructures, Services and Applications : 10th European Workshop, EuroPKI 2013, (pp. 119–133). 12–13 Sept 2013 revised selected papers. Egham, UK.Google Scholar
  33. 33.
    Hauke, K., & Owoc, M. L. (2011). Properties of cloud computing for small and medium sized enterprises. Pr Nauk Uniw Ekon we Wrocławiu, 123–130.Google Scholar
  34. 34.
    Kończyło, J. (2017). Outsourcing IT—Cloud computing jako narzędzie poprawy efektywności działania w podmiocie leczniczym. Manag Sci Nauk o Zarządzaniu, 52–58.
  35. 35.
    Bryan, D. A., Lowekamp, B. B., & Jennings, C. (2005). SOSIMPLE: A serverless, standards-based, P2P SIP communication system. In Proceedings on First International Workshop on Advanced Architectures and Algorithms for Internet Delivery and Applications 2005 (pp. 42–49).
  36. 36.
    Google Inc. (2019). Serverless computing.Google Scholar
  37. 37.
    Fox, GC., Ishakian, V., Muthusamy, V., & Slominski, A. (2017). Status of serverless computing and function-as-a-service (FaaS) in industry and research (pp. 1–22).
  38. 38.
    Google Inc. (2019). Google Cloud.Google Scholar
  39. 39.
    Nawsher, K., Noraziah, A., & Deris, M. M., & Elrasheed, I. I. (2011). Cloud computing: comparison of various features. In E. Ariwa & E. El-Qawasmeh (Eds.), Digital Enterprise and Information Systems—International Conference, DEIS 2011 (pp. 243–254). Heidelberg: Springer.Google Scholar
  40. 40.
    Amazon Inc. (2019). Amazon web services.Google Scholar
  41. 41.
    Stock, T., & Seliger, G. (2016). Opportunities of sustainable manufacturing in industry 4.0. In Procedia CIRP.Google Scholar
  42. 42.
    Nguyen, N. T., Kowalczyk, R., & Hernes, M. (2019). Transactions on computational collective intelligence XXXII. Berlin: Springer.CrossRefGoogle Scholar
  43. 43.
    Krawczyk-Jezierska, A., & Jezierski, J. (2018). Zastosowanie normy ISO/EIC 27001 w sektorze finansowym—zakres i korzyści. Ekon—Wroclaw Econ Rev 2:107–121. Scholar
  44. 44.
    Hernes, M. (2019). Consensus theory for cognitive agents’ unstructured knowledge conflicts resolving in management information systems. In N. T. Nguyen, R. Kowalczyk, & M. Hernes (Eds.), Transactions on computational collective intelligence XXXII (pp. 1–119). Berlin: Springer.Google Scholar
  45. 45.
    Radosiński, E., & Tomczak, S. K. (2017). The effectiveness of discriminant models. Operations Research and Decisions. Scholar
  46. 46.
    Roblek, V., Meško, M., & Krapež, A. (2016). A complex view of industry 4.0. SAGE Open. Scholar
  47. 47.
    Menychtas, A., Varvarigou, T., & Gatzioura A. (2011). A business resolution engine for cloud marketplaces. In Proceeding on 2011 3rd IEEE International Conference on Cloud Computing Technology and Science 2011 (pp. 462–469).

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Wroclaw University of Economics and BusinessWroclawPoland
  2. 2.Wroclaw University of Science and TechnologyWroclawPoland
  3. 3.Capgemini Software Solutions CentreWroclawPoland

Personalised recommendations