Advertisement

Lifestyle Intervention to Prevent Age-Related Hearing Loss: Calorie Restriction

  • Shinichi SomeyaEmail author
  • Christina Rothenberger
  • Mi-Jung Kim
Chapter
  • 11 Downloads

Abstract

Hearing loss is the third most prevalent chronic health condition and can lead to social isolation and major communication difficulties. The World Health Organization (WHO) estimates that one-third of persons over 65 years have disabling hearing loss. Currently, 466 million people in the world suffer hearing impairment. WHO projects that it could rise to 630 million by 2030 and over 900 million in 2050. Approximately 48 million Americans have unilateral or bilateral hearing loss, and 45% of adults aged 60–69 have hearing loss. It is well documented that reducing calorie intake or calorie restriction (CR) extends life span in diverse species and delays the onset of a variety of age-related diseases, including hypertension, diabetes, cancer, and cardiovascular disease in laboratory animals. Increasing evidence also indicates that CR has beneficial effects on auditory function in rodents and nonhuman primates. This chapter reviews the current literature on interventions for age-related hearing loss (AHL), particularly focusing on a lifestyle-based intervention, CR, and what has been learned about the mechanisms underlying the beneficial effects of CR on auditory function in laboratory animals and humans.

Keywords

Calorie restriction Oxidative stress Mitochondrial dysfunction Obesity Aging 

Abbreviations

•O2

Superoxide

•OH

Hydroxyl radical

ABR

Auditory brainstem response

AHL

Age-related hearing loss

CAT

Catalase

Complex I

NADH dehydrogenase

Complex III

Ubiquinone–cytochrome c reductase

CR

Calorie restriction

GPX1

Glutathione peroxidase 1

GSH

Reduced glutathione

GSR

Glutathione reductase

GSSG

Oxidized glutathione

GSTM1

Glutathione S-transferase mu 1

GSTP1

Glutathione S-transferase pi 1

GSTT1

Glutathione S-transferase theta 1

H2O2

Hydrogen peroxide

IHC

Inner hair cells

mtDNA

Mitochondrial DNA

NIA

National Institute on Aging

NIHL

Noise-induced hearing loss

OHC

Outer hair cells

PRDX3

Peroxiredoxin 3

ROS

Reactive oxygen species

SGN

Spiral ganglion neuron

SOD1

Superoxide dismutase 1

SOD2

Superoxide dismutase 2

SV

Stria vascularis

TXNRD

Thioredoxin reductase

UW

University of Wisconsin–Madison

References

  1. 1.
    Fontana L, Partridge L, Longo VD (2010) Extending healthy life span-from yeast to humans. Science 328(5976):321–326.  https://doi.org/10.1126/science.1172539CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273(5271):59–63.  https://doi.org/10.1126/science.273.5271.59CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Weindruch R, Sohal RS (1997) Seminars in medicine of the Beth Israel Deaconess Medical Center. Caloric intake and aging. N Engl J Med 337(14):986–994.  https://doi.org/10.1056/NEJM199710023371407CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hindhede M (1920) The effect of food restriction during war on mortality in Copenhagen. JAMA 74(6):381–382.  https://doi.org/10.1001/jama.1920.02620060015005CrossRefGoogle Scholar
  5. 5.
    Vallejo EA (1957) Hunger diet on alternate days in the nutrition of the aged. Prensa Med Argent 44(2):119–120PubMedGoogle Scholar
  6. 6.
    Kagawa Y (1978) Impact of Westernization on the nutrition of Japanese: changes in physique, cancer, longevity and centenarians. Prev Med 7(2):205–217CrossRefGoogle Scholar
  7. 7.
    Miyagi S, Iwama N, Kawabata T, Hasegawa K (2003) Longevity and diet in Okinawa, Japan: the past, present and future. Asia Pac J Public Health 15(Suppl):S3–S9.  https://doi.org/10.1177/101053950301500s03CrossRefPubMedGoogle Scholar
  8. 8.
    Anton SD, Woods AJ, Ashizawa T, Barb D, Buford TW, Carter CS, Clark DJ, Cohen RA, Corbett DB, Cruz-Almeida Y, Dotson V, Ebner N, Efron PA, Fillingim RB, Foster TC, Gundermann DM, Joseph AM, Karabetian C, Leeuwenburgh C, Manini TM, Marsiske M, Mankowski RT, Mutchie HL, Perri MG, Ranka S, Rashidi P, Sandesara B, Scarpace PJ, Sibille KT, Solberg LM, Someya S, Uphold C, Wohlgemuth S, Wu SS, Pahor M (2015) Successful aging: advancing the science of physical independence in older adults. Ageing Res Rev 24(Pt B):304–327.  https://doi.org/10.1016/j.arr.2015.09.005CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Manini TM, Buford TW, Lott DJ, Vandenborne K, Daniels MJ, Knaggs JD, Patel H, Pahor M, Perri MG, Anton SD (2014) Effect of dietary restriction and exercise on lower extremity tissue compartments in obese, older women: a pilot study. J Gerontol A Biol Sci Med Sci 69(1):101–108.  https://doi.org/10.1093/gerona/gls337CrossRefPubMedGoogle Scholar
  10. 10.
    Chen DS, Genther DJ, Betz J, Lin FR (2014) Association between hearing impairment and self-reported difficulty in physical functioning. J Am Geriatr Soc 62(5):850–856.  https://doi.org/10.1111/jgs.12800CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gispen FE, Chen DS, Genther DJ, Lin FR (2014) Association between hearing impairment and lower levels of physical activity in older adults. J Am Geriatr Soc 62(8):1427–1433.  https://doi.org/10.1111/jgs.12938CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Han C, Ding D, Lopez MC, Manohar S, Zhang Y, Kim MJ, Park HJ, White K, Kim YH, Linser P, Tanokura M, Leeuwenburgh C, Baker HV, Salvi RJ, Someya S (2016) Effects of long-term exercise on age-related hearing loss in mice. J Neurosci 36(44):11308–11319CrossRefGoogle Scholar
  13. 13.
    Yamasoba T, Lin FR, Someya S, Kashio A, Sakamoto T, Kondo K (2013) Current concepts in age-related hearing loss: epidemiology and mechanistic pathways. Hear Res 303:30–38.  https://doi.org/10.1016/j.heares.2013.01.021CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gates GA, Mills JH (2005) Presbycusis. Lancet 366(9491):1111–1120.  https://doi.org/10.1016/S0140-6736(05)67423-5CrossRefPubMedGoogle Scholar
  15. 15.
    Ozmeral EJ, Eddins AC, Frisina DR, Eddins DA (2016) Large cross-sectional study of presbycusis reveals rapid progressive decline in auditory temporal acuity. Neurobiol Aging 43:72–78.  https://doi.org/10.1016/j.neurobiolaging.2015.12.024CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    WHO (2019) Prevention of blindness and deafness: estimates. https://www.who.int/pbd/deafness/estimates/en/. Accessed 5 Jul 2019
  17. 17.
    Lin FR, Niparko JK, Ferrucci L (2011b) Hearing loss prevalence in the United States. Arch Intern Med 171(20):1851–1852.  https://doi.org/10.1001/archinternmed.2011.506CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lin FR, Metter EJ, O'Brien RJ, Resnick SM, Zonderman AB, Ferrucci L (2011a) Hearing loss and incident dementia. Arch Neurol 68(2):214–220.  https://doi.org/10.1001/archneurol.2010.362CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Liberman MC, Kujawa SG (2017) Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms. Hear Res 349:138–147.  https://doi.org/10.1016/j.heares.2017.01.003CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hudspeth AJ (1997) How hearing happens. Neuron 19(5):947–950CrossRefGoogle Scholar
  21. 21.
    Schuknecht HF (1955) Presbycusis. Laryngoscope 65(6):402–419.  https://doi.org/10.1288/00005537-195506000-00002CrossRefPubMedGoogle Scholar
  22. 22.
    Schuknecht HF, Watanuki K, Takahashi T, Belal AA Jr, Kimura RS, Jones DD, Ota CY (1974) Atrophy of the stria vascularis, a common cause for hearing loss. Laryngoscope 84(10):1777–1821.  https://doi.org/10.1288/00005537-197410000-00012CrossRefPubMedGoogle Scholar
  23. 23.
    Gratton MA, Schulte BA (1995) Alterations in microvasculature are associated with atrophy of the stria vascularis in quiet-aged gerbils. Hear Res 82(1):44–52CrossRefGoogle Scholar
  24. 24.
    Someya S, Yamasoba T, Weindruch R, Prolla TA, Tanokura M (2007) Caloric restriction suppresses apoptotic cell death in the mammalian cochlea and leads to prevention of presbycusis. Neurobiol Aging 28(10):1613–1622.  https://doi.org/10.1016/j.neurobiolaging.2006.06.024CrossRefPubMedGoogle Scholar
  25. 25.
    Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325(5937):201–204.  https://doi.org/10.1126/science.1173635CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, Longo DL, Allison DB, Young JE, Bryant M, Barnard D, Ward WF, Qi W, Ingram DK, de Cabo R (2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489(7415):318–321.  https://doi.org/10.1038/nature11432CrossRefPubMedGoogle Scholar
  27. 27.
    Sohal RS, Ku HH, Agarwal S, Forster MJ, Lal H (1994) Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev 74(1–2):121–133CrossRefGoogle Scholar
  28. 28.
    Mattson MP, Duan W, Guo Z (2003) Meal size and frequency affect neuronal plasticity and vulnerability to disease: cellular and molecular mechanisms. J Neurochem 84(3):417–431.  https://doi.org/10.1046/j.1471-4159.2003.01586.xCrossRefPubMedGoogle Scholar
  29. 29.
    Pugh TD, Klopp RG, Weindruch R (1999) Controlling caloric consumption: protocols for rodents and rhesus monkeys. Neurobiol Aging 20(2):157–165CrossRefGoogle Scholar
  30. 30.
    Barkin RM, Todd JK, Amer J (1978) Periorbital cellulitis in children. Pediatrics 62(3):390–392PubMedGoogle Scholar
  31. 31.
    Keithley EM, Canto C, Zheng QY, Fischel-Ghodsian N, Johnson KR (2004) Age-related hearing loss and the ahl locus in mice. Hear Res 188(1–2):21–28.  https://doi.org/10.1016/S0378-5955(03)00365-4CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zheng QY, Johnson KR, Erway LC (1999) Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hear Res 130(1–2):94–107CrossRefGoogle Scholar
  33. 33.
    Willott JF, Erway LC, Archer JR, Harrison DE (1995) Genetics of age-related hearing loss in mice. II. Strain differences and effects of caloric restriction on cochlear pathology and evoked response thresholds. Hear Res 88(1–2):143–155CrossRefGoogle Scholar
  34. 34.
    Sweet RJ, Price JM, Henry KR (1988) Dietary restriction and presbyacusis: periods of restriction and auditory threshold losses in the CBA/J mouse. Audiology 27(6):305–312CrossRefGoogle Scholar
  35. 35.
    Henry KR (1986) Effects of dietary restriction on presbyacusis in the mouse. Audiology 25(6):329–337CrossRefGoogle Scholar
  36. 36.
    Seidman MD (2000) Effects of dietary restriction and antioxidants on presbyacusis. Laryngoscope 110(5 Pt 1):727–738.  https://doi.org/10.1097/00005537-200005000-00003CrossRefPubMedGoogle Scholar
  37. 37.
    Mannström P, Ulfhake B, Kirkegaard M, Ulfendahl M (2013) Dietary restriction reduces age- related degeneration of stria vascularis in the inner ear of the rat. Exp Gerontol 48(11):1173–1179.  https://doi.org/10.1016/j.exger.2013.07.004CrossRefPubMedGoogle Scholar
  38. 38.
    Fowler CG, Torre P, Kemnitz JW (2002) Effects of caloric restriction and aging on the auditory function of rhesus monkeys (Macaca mulatta): The University of Wisconsin Study. Hear Res 169(1–2):24–35CrossRefGoogle Scholar
  39. 39.
    Mouse Phenome Database (2007) Yuan 2: Aging study: Lifespan and survival curves for 31 inbred strains of mice. http://phenome.jax.org/pubcgi/phenome/mpdcgi?rtn=projects/details&sym=Yuan2. Accessed 5 Jul 2019
  40. 40.
    Bielefeld EC, Coling D, Chen GD, Li M, Tanaka C, Hu BH, Henderson D (2008) Age-related hearing loss in the Fischer 344/NHsd rat substrain. Hear Res 241(1–2):26–33.  https://doi.org/10.1016/j.heares.2008.04.006CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Keithley EM, Ryan AF, Feldman ML (1992) Cochlear degeneration in aged rats of four strains. Hear Res 59(2):171–178CrossRefGoogle Scholar
  42. 42.
    Syka J (2010) The Fischer 344 rat as a model of presbycusis. Hear Res 264(1–2):70–78.  https://doi.org/10.1016/j.heares.2009.11.003CrossRefPubMedGoogle Scholar
  43. 43.
    Fetoni AR, Picciotti PM, Paludetti G, Troiani D (2011) Pathogenesis of presbycusis in animal models: a review. Exp Gerontol 46(6):413–425.  https://doi.org/10.1016/j.exger.2010.12.003CrossRefPubMedGoogle Scholar
  44. 44.
    Keithley EM, Feldman ML (1982) Hair cell counts in an age-graded series of rat cochleas. Hear Res 8(3):249–262CrossRefGoogle Scholar
  45. 45.
    Alvarado JC, Fuentes-Santamaría V, Gabaldón-Ull MC, Blanco JL, Juiz JM (2014) Wistar rats: a forgotten model of age-related hearing loss. Front Aging Neurosci 6:29.  https://doi.org/10.3389/fnagi.2014.00029CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Roth GS, Mattison JA, Ottinger MA, Chachich ME, Lane MA, Ingram DK (2004) Aging in rhesus monkeys: relevance to human health interventions. Science 305(5689):1423–1426.  https://doi.org/10.1126/science.1102541CrossRefPubMedGoogle Scholar
  47. 47.
    Torre P, Fowler CG (2000) Age-related changes in auditory function of rhesus monkeys (Macaca mulatta). Hear Res 142(1–2):131–140CrossRefGoogle Scholar
  48. 48.
    Caras ML (2013) Estrogenic modulation of auditory processing: a vertebrate comparison. Front Neuroendocrinol 34(4):285–299.  https://doi.org/10.1016/j.yfrne.2013.07.006CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Chung DY, Mason K, Gannon RP, Willson GN (1983) The ear effect as a function of age and hearing loss. J Acoust Soc Am 73(4):1277–1282.  https://doi.org/10.1121/1.389276CrossRefPubMedGoogle Scholar
  50. 50.
    Dehan CP, Jerger J (1990) Analysis of gender differences in the auditory brainstem response. Laryngoscope 100(1):18–24.  https://doi.org/10.1288/00005537-199001000-00005CrossRefPubMedGoogle Scholar
  51. 51.
    Jerger J, Johnson K (1998) Interactions of age, gender, and sensorineural hearing loss on ABR latency. Ear Hear 9(4):168–176CrossRefGoogle Scholar
  52. 52.
    Jönsson R, Rosenhall U, Gause-Nilsson I, Steen B (1998) Auditory function in 70- and 75-year-olds of four age cohorts. A cross-sectional and time-lag study of presbyacusis. Scand Audiol 27(2):81–93CrossRefGoogle Scholar
  53. 53.
    McFadden D (1998) Sex differences in the auditory system. Dev Neuropsychol 14:261–298.  https://doi.org/10.1080/87565649809540712CrossRefGoogle Scholar
  54. 54.
    Snihur AW, Hampson E (2011) Sex and ear differences in spontaneous and click-evoked otoacoustic emissions in young adults. Brain Cogn 77(1):40–47.  https://doi.org/10.1016/j.bandc.2011.06.004CrossRefPubMedGoogle Scholar
  55. 55.
    Torre P, Mattison JA, Fowler CG, Lane MA, Roth GS, Ingram DK (2004) Assessment of auditory function in rhesus monkeys (Macaca mulatta): effects of age and calorie restriction. Neurobiol Aging 25(7):945–954.  https://doi.org/10.1016/j.neurobiolaging.2003.09.006CrossRefPubMedGoogle Scholar
  56. 56.
    Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495.  https://doi.org/10.1016/j.cell.2005.02.001CrossRefPubMedGoogle Scholar
  57. 57.
    Cassano P, Lezza AM, Leeuwenburgh C, Cantatore P, Gadaleta MN (2004) Measurement of the 4,834-bp mitochondrial DNA deletion level in aging rat liver and brain subjected or not to caloric restriction diet. Ann N Y Acad Sci 1019:269–273.  https://doi.org/10.1196/annals.1297.045CrossRefPubMedGoogle Scholar
  58. 58.
    Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78(2):547–581.  https://doi.org/10.1152/physrev.1998.78.2.547CrossRefPubMedGoogle Scholar
  59. 59.
    Evans P, Halliwell B (1999) Free radicals and hearing. Cause, consequence, and criteria. Ann N Y Acad Sci 884:19–40.  https://doi.org/10.1111/j.1749-6632.1999.tb08633.xCrossRefPubMedGoogle Scholar
  60. 60.
    Marí M, Morales A, Colell A, Garcia-Ruiz C, Fernandez-Checa JC (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11(11):2685-2700.  https://doi.org/10.1089/ars.2009.2695CrossRefPubMedCentralGoogle Scholar
  61. 61.
    Beckman KB, Ames BN (1997) Oxidative decay of DNA. J Biol Chem 272(32):19633–19636.  https://doi.org/10.1074/jbc.272.32.19633CrossRefPubMedGoogle Scholar
  62. 62.
    Rebrin I, Sohal RS (2008) Pro-oxidant shift in glutathione redox state during aging. Adv Drug Deliv Rev 60(13–14):1545–1552.  https://doi.org/10.1016/j.addr.2008.06.001CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Sun J, Folk D, Bradley TJ, Tower J (2002) Induced overexpression of mitochondrial Mn- superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics 161(2):661–672PubMedPubMedCentralGoogle Scholar
  64. 64.
    Runko AP, Griswold AJ, Min KT (2008) Overexpression of frataxin in the mitochondria increases resistance to oxidative stress and extends lifespan in Drosophila. FEBS Lett 582(5):715–719.  https://doi.org/10.1016/j.febslet.2008.01.046CrossRefPubMedGoogle Scholar
  65. 65.
    Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308(5730):1909–1911.  https://doi.org/10.1126/science.1106653CrossRefPubMedGoogle Scholar
  66. 66.
    Liu XZ, Yan D (2007) Ageing and hearing loss. J Pathol 211(2):188–197.  https://doi.org/10.1002/path.2102CrossRefPubMedGoogle Scholar
  67. 67.
    Someya S, Prolla TA (2010) Mitochondrial oxidative damage and apoptosis in age-related hearing loss. Mech Ageing Dev 131(7–8):480–486.  https://doi.org/10.1016/j.mad.2010.04.006CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Yamasoba T, Someya S, Yamada C, Weindruch R, Prolla TA, Tanokura M (2007) Role of mitochondrial dysfunction and mitochondrial DNA mutations in age- related hearing loss. Hear Res 226(1–2):185–193.  https://doi.org/10.1016/j.heares.2006.06.004CrossRefPubMedGoogle Scholar
  69. 69.
    Jacono AA, Hu B, Kopke RD, Henderson D, Van De Water TR, Steinman HM (1998) Changes in cochlear antioxidant enzyme activity after sound conditioning and noise exposure in the chinchilla. Hear Res 117(1–2):31–38CrossRefGoogle Scholar
  70. 70.
    McFadden SL, Ding D, Reaume AG, Flood DG, Salvi RJ (1999) Age-related cochlear hair cell loss is enhanced in mice lacking copper/zinc superoxide dismutase. Neurobiol Aging 20(1):1–8CrossRefGoogle Scholar
  71. 71.
    Ohlemiller KK, McFadden SL, Ding DL, Lear PM, Ho YS (2000) Targeted mutation of the gene for cellular glutathione peroxidase (Gpx1) increases noise-induced hearing loss in mice. J Assoc Res Otolaryngol 1(3):243–254.  https://doi.org/10.1007/s101620010043CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Fortunato G, Marciano E, Zarrilli F, Mazzaccara C, Intrieri M, Calcagno G, Vitale DF, La Manna P, Saulino C, Marcelli V, Sacchetti L (2004) Paraoxonase and superoxide dismutase gene polymorphisms and noise-induced hearing loss. Clin Chem 50(11):2012–2018.  https://doi.org/10.1373/clinchem.2004.037788CrossRefPubMedGoogle Scholar
  73. 73.
    Jiang H, Talaska AE, Schacht J, Sha SH (2007) Oxidative imbalance in the aging inner ear. Neurobiol Aging 28(10):1605–1612.  https://doi.org/10.1016/j.neurobiolaging.2006.06.025CrossRefPubMedGoogle Scholar
  74. 74.
    Someya S, Xu J, Kondo K, Ding D, Salvi RJ, Yamasoba T, Rabinovitch PS, Weindruch R, Leeuwenburgh C, Tanokura M, Prolla TA (2009) Age-related hearing loss in C57BL/6J mice is mediated by Bak-dependent mitochondrial apoptosis. Proc Natl Acad Sci U S A 106(46):19432–19437.  https://doi.org/10.1073/pnas.0908786106CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Van Eyken E, Van Camp G, Fransen E, Topsakal V, Hendrickx JJ, Demeester K, Van de Heyning P, Maki-Torkko E, Hannula S, Sorri M, Jensen M, Parving A, Bille M, Baur M, Pfister M, Bonaconsa A, Mazzoli M, Orzan E, Espeso A, Stephens D, Verbruggen K, Huyghe J, Dhooge I, Huygen P, Kremer H, Cremers CW, Kunst S, Manninen M, Pyykko I, Lacava A, Steffens M, Wienker TF, Van Laer L (2007) Contribution of the N-acetyltransferase 2 polymorphism NAT2∗6A to age- related hearing impairment. J Med Genet 44(9):570–578.  https://doi.org/10.1136/jmg.2007.049205CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Bared A, Ouyang X, Angeli S, Du LL, Hoang K, Yan D, Liu XZ (2010) Antioxidant enzymes, presbycusis, and ethnic variability. Otolaryngol Head Neck Surg 143(2):263–268.  https://doi.org/10.1016/j.otohns.2010.03.024CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Banaclocha MM (2001) Therapeutic potential of N-acetylcysteine in age-related mitochondrial neurodegenerative diseases. Med Hypotheses 56(4):472–477.  https://doi.org/10.1054/mehy.2000.1194CrossRefPubMedGoogle Scholar
  78. 78.
    Palaniappan AR, Dai A (2007) Mitochondrial ageing and the beneficial role of alpha-lipoic acid. Neurochem Res 32(9):1552–1558.  https://doi.org/10.1007/s11064-007-9355-4CrossRefPubMedGoogle Scholar
  79. 79.
    Hagen TM, Moreau R, Suh JH, Visioli F (2002) Mitochondrial decay in the aging rat heart: evidence for improvement by dietary supplementation with acetyl-L-carnitine and/or lipoic acid. Ann N Y Acad Sci 959:491–507.  https://doi.org/10.1111/j.1749-6632.2002.tb02119.xCrossRefPubMedGoogle Scholar
  80. 80.
    Liu J, Killilea DW, Ames BN (2002) Age-associated mitochondrial oxidative decay: improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-L- carnitine and/or R-alpha -lipoic acid. Proc Natl Acad Sci U S A 99(4):1876–1881.  https://doi.org/10.1073/pnas.261709098CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Derin A, Agirdir B, Derin N, Dinc O, Guney K, Ozcaglar H, Kilincarslan S (2004) The effects of L-carnitine on presbyacusis in the rat model. Clin Otolaryngol Allied Sci 29(3):238–241.  https://doi.org/10.1111/j.1365-2273.2004.00790.xCrossRefPubMedGoogle Scholar
  82. 82.
    Seidman MD, Khan MJ, Bai U, Shirwany N, Quirk WS (2000) Biologic activity of mitochondrial metabolites on aging and age-related hearing loss. Am J Otol 21(2):161–167CrossRefGoogle Scholar
  83. 83.
    Ahn JH, Kang HH, Kim TY, Shin JE, Chung JW (2008) Lipoic acid rescues DBA mice from early-onset age-related hearing impairment. Neuroreport 19(13):1265–1269.  https://doi.org/10.1097/WNR.0b013e328308b338CrossRefPubMedGoogle Scholar
  84. 84.
    Ding D, Jiang H, Chen GD, Longo-Guess C, Muthaiah VP, Tian C, Sheppard A, Salvi R, Johnson KR (2014) N-acetyl-cysteine prevents age-related hearing loss and the progressive loss of inner hair cells in γ-glutamyl transferase 1 deficient mice. Aging (Albany NY) 8(4):730–750.  https://doi.org/10.18632/agingCrossRefGoogle Scholar
  85. 85.
    Wu HP, Hsu CJ, Cheng TJ, Guo YL (2010) N-acetylcysteine attenuates noise-induced permanent hearing loss in diabetic rats. Hear Res 267(1–2):71–77.  https://doi.org/10.1016/j.heares.2010.03.082CrossRefPubMedGoogle Scholar
  86. 86.
    Ohinata Y, Yamasoba T, Schacht J, Miller JM (2000) Glutathione limits noise-induced hearing loss. Hear Res 146(1–2):28–34CrossRefGoogle Scholar
  87. 87.
    Sohal RS, Forster MJ (2007) Coenzyme Q, oxidative stress and aging. Mitochondrion 7(Suppl):S103–S111.  https://doi.org/10.1016/j.mito.2007.03.006CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Guastini L, Mora R, Dellepiane M, Santomauro V, Giorgio M, Salami A (2011) Water-soluble coenzyme Q10 formulation in presbycusis: long-term effects. Acta Otolaryngol 131(5):512–517.  https://doi.org/10.3109/00016489.2010.539261CrossRefPubMedGoogle Scholar
  89. 89.
    Perry TL, Yong VW (1986) Idiopathic Parkinson’s disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients. Neurosci Lett 67(3):269–274.  https://doi.org/10.1016/0304-3940(86)90320-4CrossRefPubMedGoogle Scholar
  90. 90.
    Zeevalk GD, Bernard LP, Song C, Gluck M, Ehrhart J (2005) Mitochondrial inhibition and oxidative stress: reciprocating players in neurodegeneration. Antioxid Redox Signal 7(9–10):1117–1139.  https://doi.org/10.1089/ars.2005.7.1117CrossRefPubMedGoogle Scholar
  91. 91.
    Dirks AJ, Hofer T, Marzetti E, Pahor M, Leeuwenburgh C (2006) Mitochondrial DNA mutations, energy metabolism and apoptosis in aging muscle. Ageing Res Rev 5(2):179–195.  https://doi.org/10.1016/j.arr.2006.03.002CrossRefPubMedGoogle Scholar
  92. 92.
    Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC, Shiels HA, Ulrich E, Waymire KG, Mahar P, Frauwirth K, Chen Y, Wei M, Eng VM, Adelman DM, Simon MC, Ma A, Golden JA, Evan G, Korsmeyer SJ, MacGregor GR, Thompson CB (2000) The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6(6):1389–1399CrossRefGoogle Scholar
  93. 93.
    Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9(1):47–59.  https://doi.org/10.1038/nrm2308CrossRefPubMedGoogle Scholar
  94. 94.
    Kujoth GC, Bradshaw PC, Haroon S, Prolla TA (2007) The role of mitochondrial DNA mutations in mammalian aging. PLoS Genet 3(2):e24.  https://doi.org/10.1371/journal.pgen.0030024CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla TA (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309(5733):481–484.  https://doi.org/10.1126/science.1112125CrossRefPubMedGoogle Scholar
  96. 96.
    Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1(2):120–129.  https://doi.org/10.1038/35040009CrossRefPubMedGoogle Scholar
  97. 97.
    Shelke RR, Leeuwenburgh C (2003) Lifelong caloric restriction increases expression of apoptosis repressor with a caspase recruitment domain (ARC) in the brain. FASEB J 17(3):494–496.  https://doi.org/10.1096/fj.02-0803fjeCrossRefPubMedGoogle Scholar
  98. 98.
    Wallace DC, Shoffner JM, Trounce I, Brown MD, Ballinger SW, Corral-Debrinski M, Horton T, Jun AS, Lott MT (1995) Mitochondrial DNA mutations in human degenerative diseases and aging. Biochim Biophys Acta 1271(1):141–151.  https://doi.org/10.1016/0925-4439(95)00021-uCrossRefPubMedGoogle Scholar
  99. 99.
    Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G (1999) Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286(5440):774–779.  https://doi.org/10.1126/science.286.5440.774CrossRefPubMedGoogle Scholar
  100. 100.
    Chinnery PF, Elliott C, Green GR, Rees A, Coulthard A, Turnbull DM, Griffiths TD (2000) The spectrum of hearing loss due to mitochondrial DNA defects. Brain 123(Pt 1):82–92.  https://doi.org/10.1093/brain/123.1.82CrossRefPubMedGoogle Scholar
  101. 101.
    Fischel-Ghodsian N (2003) Mitochondrial deafness. Ear Hear 24(4):303–313.  https://doi.org/10.1097/01.aud.0000079802.82344.b5CrossRefPubMedGoogle Scholar
  102. 102.
    Kokotas H, Petersen MB, Willems PJ (2007) Mitochondrial deafness. Clin Genet 71(5):379–391.  https://doi.org/10.1111/j.1399-0004.2007.00800.xCrossRefPubMedGoogle Scholar
  103. 103.
    Pickles JO (2004) Mutation in mitochondrial DNA as a cause of presbyacusis. Audiol Neurootol 9(1):23–33.  https://doi.org/10.1159/000074184CrossRefPubMedGoogle Scholar
  104. 104.
    Mancuso M, Filosto M, Bellan M, Liguori R, Montagna P, Baruzzi A, DiMauro S, Carelli V (2004) POLG mutations causing ophthalmoplegia, sensorimotor polyneuropathy, ataxia, and deafness. Neurology 62(2):316–318.  https://doi.org/10.1212/wnl.62.2.316CrossRefPubMedGoogle Scholar
  105. 105.
    Nguyen KV, Ostergaard E, Ravn SH, Balslev T, Danielsen ER, Vardag A, McKiernan PJ, Gray G, Naviaux RK (2005) POLG mutations in Alpers syndrome. Neurology 65(9):1493–1495.  https://doi.org/10.1212/01.wnl.0000182814.55361.70CrossRefPubMedGoogle Scholar
  106. 106.
    Someya S, Yamasoba T, Kujoth GC, Pugh TD, Weindruch R, Tanokura M, Prolla TA (2008) The role of mtDNA mutations in the pathogenesis of age-related hearing loss in mice carrying a mutator DNA polymerase gamma. Neurobiol Aging 29(7):1080–1092.  https://doi.org/10.1016/j.neurobiolaging.2007.01.014CrossRefPubMedGoogle Scholar
  107. 107.
    Aspnes LE, Lee CM, Weindruch R, Chung SS, Roecker EB, Aiken JM (1997) Caloric restriction reduces fiber loss and mitochondrial abnormalities in aged rat muscle. FASEB J 11(7):573–581.  https://doi.org/10.1096/fasebj.11.7.9212081CrossRefPubMedGoogle Scholar
  108. 108.
    Paeratakul S, Lovejoy JC, Ryan DH, Bray GA (2002) The relation of gender, race and socioeconomic status to obesity and obesity comorbidities in a sample of US adults. Int J Obes Relat Metab Disord 26(9):1205–1210.  https://doi.org/10.1038/sj.ijo.0802026CrossRefPubMedGoogle Scholar
  109. 109.
    Vaughan N, James K, McDermott D, Griest S, Fausti S (2006) A 5-year prospective study of diabetes and hearing loss in a veteran population. Otol Neurotol 27(1):37–43CrossRefGoogle Scholar
  110. 110.
    Dutta D, Calvani R, Bernabei R, Leeuwenburgh C, Marzetti E (2012) Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities. Circ Res 110(8):1125–1138.  https://doi.org/10.1161/circresaha.111.246108CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Ivanova DG, Yankova TM (2013) The free radical theory of aging in search of a strategy for increasing life span. Folia Med (Plovdiv) 55(1):33–41CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Shinichi Someya
    • 1
    Email author
  • Christina Rothenberger
    • 1
  • Mi-Jung Kim
    • 1
  1. 1.Department of Aging and Geriatric ResearchUniversity of FloridaGainesvilleUSA

Personalised recommendations