Advertisement

Receptor Models of Phagocytosis: The Effect of Target Shape

  • David M. RichardsEmail author
Chapter
  • 81 Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1246)

Abstract

Phagocytosis is a remarkably complex process, requiring simultaneous organisation of the cell membrane, the cytoskeleton, receptors and various signalling molecules. As can often be the case, mathematical modelling is able to penetrate some of this complexity, identifying the key biophysical components and generating understanding that would take far longer with a purely experimental approach. This chapter will review a particularly important class of phagocytosis model, championed in recent years, that primarily focuses on the role of receptors during the engulfment process. These models are pertinent to a host of unsolved questions in the subject, including the rate of cup growth during uptake, the role of both intra- and extracellular noise, and the precise differences between phagocytosis and other forms of endocytosis. In particular, this chapter will focus on the effect of target shape and orientation, including how these influence the rate and final outcome of phagocytic engulfment.

Keywords

Mathematical modelling Computer simulation Receptors Target shape dependence 

References

  1. Allen LA, Aderem A (1996) Molecular definition of distinct cytoskeletal structures involved in complement- and Fc receptor-mediated phagocytosis in macrophages. J Exp Med 184:627–637PubMedCrossRefPubMedCentralGoogle Scholar
  2. An G, Fitzpatrick BG, Christley S, Federico P, Kanarek A, Neilan RM, Oremland M, Salinas R, Laubenbacher R, Lenhart S (2017) Optimization and control of agent-based models in biology: a perspective. Bull Math Biol 79(1):63–87PubMedCrossRefPubMedCentralGoogle Scholar
  3. Axline SG, Reaven EP (1974) Inhibition of phagocytosis and plasma membrane mobility of the cultivated macrophage by cytochalasin B. Role of subplasmalemmal microfilaments. J Cell Biol 62:647–659PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bahrami AH, Raatz M, Agudo-Canalejo J, Michel R, Curtis EM, Hall CK, Gradzielski M, Lipowsky R, Weikl TR (2014) Wrapping of nanoparticles by membranes. Adv Colloid Interface Sci 208:214–224PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bahrami AH, Lipowsky R, Weikl TR (2016) The role of membrane curvature for the wrapping of nanoparticles. Soft Matter 12(2):581–7PubMedCrossRefPubMedCentralGoogle Scholar
  6. Beningo KA, Wang Y-L (2002) Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J Cell Sci 115:849–856PubMedPubMedCentralGoogle Scholar
  7. Berg HC (1993) Random walks in biology. Princeton University Press, Princeton. ISBN: 978-0-69100-064-0Google Scholar
  8. Cannon GJ, Swanson JA (1992) The macrophage capacity for phagocytosis. J Cell Sci 101(Pt 4):907–913PubMedGoogle Scholar
  9. Carrera J, Covert MW (2015) Why build whole-cell models? Trends Cell Biol 25(12):719–722PubMedPubMedCentralCrossRefGoogle Scholar
  10. Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 103(13):4930–4934PubMedCrossRefGoogle Scholar
  11. Champion JA, Mitragotri S (2009) Shape induced inhibition of phagocytosis of polymer particles. Pharm Res 26(1):244–249PubMedCrossRefGoogle Scholar
  12. Champion JA, Walker A, Mitragotri S (2008) Role of particle size in phagocytosis of polymeric microspheres. Pharm Res 25(8):1815–1821PubMedPubMedCentralCrossRefGoogle Scholar
  13. Clarke M, Engel U, Giorgione J, Müller-Taubenberger A, Prassler J, Veltman D, Gerisch G (2010) Curvature recognition and force generation in phagocytosis. BMC Biol 8:154PubMedPubMedCentralCrossRefGoogle Scholar
  14. Codling EA, Plank MJ, Benhamou S (2008) Random walk models in biology. J R Soc Interface 5(25):813–834PubMedPubMedCentralCrossRefGoogle Scholar
  15. Deuling H, Helfrich W (1976) The curvature elasticity of fluid membranes: a catalogue of vesicle shapes. Journal de Physique 37(11):1335–1345CrossRefGoogle Scholar
  16. Dieckmann R, von Heyden Y, Kistler C, Gopaldass N, Hausherr S, Crawley SW, Schwarz EC, Diensthuber RP, Côté GP, Tsiavaliaris G, Soldati T (2010) A myosin IK-Abp1-PakB circuit acts as a switch to regulate phagocytosis efficiency. Mol Biol Cell 21:1505–18PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dorn M, E Silva MB, Buriol LS, Lamb LC (2014) Three-dimensional protein structure prediction: Methods and computational strategies. Comput Biol Chem 53:251–276Google Scholar
  18. Feig M, Sugita Y (2019) Whole-cell models and simulations in molecular detail. Annu Rev Cell Dev Biol 35:191–211PubMedCrossRefGoogle Scholar
  19. Flannagan RS, Jaumouillé V, Grinstein S (2012) The cell biology of phagocytosis. Annu Rev Pathol Mech Dis 7:61–98CrossRefGoogle Scholar
  20. Freund LB, Lin Y (2004) The role of binder mobility in spontaneous adhesive contact and implications for cell adhesion. J Mech Phys Solids 52:2455–2472CrossRefGoogle Scholar
  21. Gao H, Shi W, Freund L (2005) Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA 102(27):9469–9474PubMedCrossRefPubMedCentralGoogle Scholar
  22. García-García E, Rosales C (2005) Adding complexity to phagocytic signaling: phagocytosis-associated cell responses and phagocytic efficiency. In: Molecular mechanisms of phagocytosis. Springer, pp 58–71, ISBN 978-0-387-25419-7Google Scholar
  23. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2(4):249–255PubMedPubMedCentralCrossRefGoogle Scholar
  24. Goldberg AP, Szigeti B, Chew YH, Sekar JA, Roth YD, Karr JR (2018) Emerging whole-cell modeling principles and methods. Curr Opin Biotechnol 51:97–102PubMedCrossRefPubMedCentralGoogle Scholar
  25. Goosney DL, de Grado M, Finlay BB (1999) Putting E. coli on a pedestal: a unique system to study signal transduction and the actin cytoskeleton. Trends Cell Biol 9(1):11–14PubMedCrossRefGoogle Scholar
  26. Greenberg S (2001) Diversity in phagocytic signalling. J Cell Sci 114:1039–1040PubMedGoogle Scholar
  27. Gupta SC (2003) The classical Stefan problem: basic concepts, modelling and analysis. North-Holland series in Applied mathematics and mechanics (Book 45). JAI Press. ISBN: 978-0-44451-086-0Google Scholar
  28. Heinrich V (2015) Controlled one-on-one encounters between immune cells and microbes reveal mechanisms of phagocytosis. Biophys J 109:469–476PubMedPubMedCentralCrossRefGoogle Scholar
  29. Heinrich V, Lee C-Y (2011) Blurred line between chemotactic chase and phagocytic consumption: an immunophysical single-cell perspective. J Cell Sci 124:3041–3051PubMedPubMedCentralCrossRefGoogle Scholar
  30. Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch 28:693–703CrossRefGoogle Scholar
  31. Herant M, Heinrich V, Dembo M (2005) Mechanics of neutrophil phagocytosis: behavior of the cortical tension. J Cell Sci 118:1789–1797PubMedCrossRefPubMedCentralGoogle Scholar
  32. Herant M, Heinrich V, Dembo M (2006) Mechanics of neutrophil phagocytosis: experiments and quantitative models. J Cell Sci 119:1903–1913PubMedPubMedCentralCrossRefGoogle Scholar
  33. Herant M, Lee C-Y, Dembo M, Heinrich V (2011) Protrusive push versus enveloping embrace: computational model of phagocytosis predicts key regulatory role of cytoskeletal membrane anchors. PLoS Comput Biol 7:e1001068PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its applications to conduction and excitation in nerve. J Physiol (Lond) 117:500–544CrossRefGoogle Scholar
  35. Hollingsworth SA, Dror RO (2018) Molecular dynamics simulation for all. Neuron 99(6):1129–1143PubMedPubMedCentralCrossRefGoogle Scholar
  36. Horwitz MA (1984) Phagocytosis of the Legionnaires’ disease bacterium (Legionella pneumophila) occurs by a novel mechanism: engulfment within a pseudopod coil. Cell 36(1):27–33PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hospital A, Goñi JM, Orozco M Gelpí JL (2015) Molecular dynamics simulations: advances and applications. Adv Appl Bioinforma Chem 8:37–47Google Scholar
  38. Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2(2):123–140PubMedCrossRefPubMedCentralGoogle Scholar
  39. Kaplan G (1977) Differences in the mode of phagocytosis with Fc and C3 receptors in macrophages. Scand J Immunol 6:797–807PubMedCrossRefPubMedCentralGoogle Scholar
  40. Koval M, Preiter K, Adles C, Stahl PD, Steinberg TH (1998) Size of IgG-opsonized particles determines macrophage response during internalization. Exp Cell Res 242(1):265–273PubMedCrossRefGoogle Scholar
  41. Kress H, Stelzer EHK, Holzer D, Buss F, Griffiths G, Rohrbach A (2007) Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity. Proc Natl Acad Sci USA 104:11633–11638PubMedCrossRefGoogle Scholar
  42. Kwiatkowska K, Sobota A (1999) Signaling pathways in phagocytosis. Bioessays 21(5):422–431PubMedCrossRefGoogle Scholar
  43. Lengerová A, Lenger VJ, Esslová M, Tuscany R, Volfová M (1957) The influence of the shape of dust particles on the rate of phagocytosis in vitro. Br J Ind Med 14(1):43–46PubMedPubMedCentralGoogle Scholar
  44. Lu Z, Qiao Y, Zheng XT, Chan-Park MB, Li CM (2010) Effect of particle shape on phagocytosis of CdTe quantum dot-cystine composites. MedChemComm 1:84–86CrossRefGoogle Scholar
  45. Möller J, Luehmann T, Hall H, Vogel V (2012) The race to the pole: how high-aspect ratio shape and heterogeneous environments limit phagocytosis of filamentous Escherichia coli bacteria by macrophages. Nano Lett 12(6):2901–2905PubMedCrossRefPubMedCentralGoogle Scholar
  46. Mackey MC, Maini PK (2015) What has mathematics done for biology? Bull Math Biol 77(5):735–738PubMedCrossRefPubMedCentralGoogle Scholar
  47. Meirmanov AM (1992) The Stefan problem. De Gruyter expositions in mathematics. Walter de Gruyter, Berlin. ISBN: 3-11-011479-8Google Scholar
  48. Niedergang F, Di Bartolo V, Alcover A (2016) Comparative anatomy of phagocytic and immunological synapses. Front Immunol 7:18PubMedPubMedCentralCrossRefGoogle Scholar
  49. Nowak MA (2006) Evolutionary dynamics: exploring the equations of life. Harvard University Press, Cambridge. ISBN: 978-0-67402-338-3CrossRefGoogle Scholar
  50. Ojkic N, López-Garrido J, Pogliano K, Endres RG (2014) Bistable forespore engulfment in Bacillus subtilis by a zipper mechanism in absence of the cell wall. PLoS Comput Biol 10(10):e1003912PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ojkic N, López-Garrido J, Pogliano K, Endres RG (2016) Cell-wall remodeling drives engulfment during Bacillus subtilis sporulation. Elife 5:e18657PubMedPubMedCentralCrossRefGoogle Scholar
  52. Pacheco P, White D, Sulchek T (2013) Effects of microparticle size and Fc density on macrophage phagocytosis. PLoS One 8:e60989PubMedPubMedCentralCrossRefGoogle Scholar
  53. Paul D, Achouri S, Yoon Y-Z, Herre J, Bryant CE, Cicuta P (2013) Phagocytosis dynamics depends on target shape. Biophys J 105(5):1143–1150PubMedPubMedCentralCrossRefGoogle Scholar
  54. Pratten MK, Lloyd JB (1986) Pinocytosis and phagocytosis: the effect of size of a particulate substrate on its mode of capture by rat peritoneal macrophages cultured in vitro. Biochim Biophys Acta 881(3):307–313PubMedCrossRefGoogle Scholar
  55. Reed MC (2004) Why is mathematical biology so hard? Notices Am Math Soc 51(3):338–342Google Scholar
  56. Richards DM, Endres RG (2014) The mechanism of phagocytosis: two stages of engulfment. Biophys J 107:1542–1553PubMedPubMedCentralCrossRefGoogle Scholar
  57. Richards DM, Endres RG (2016) Target shape dependence in a simple model of receptor-mediated endocytosis and phagocytosis. Proc Natl Acad Sci USA 113:6113–6118PubMedCrossRefPubMedCentralGoogle Scholar
  58. Richards DM, Endres RG (2017) How cells engulf: a review of theoretical approaches to phagocytosis. Rep Prog Phys 80(12):126601PubMedCrossRefPubMedCentralGoogle Scholar
  59. Rittig MG, Krause A, Häupl T, Schaible UE, Modolell M, Kramer MD, Lütjen-Drecoll E, Simon MM, Burmester GR (1992) Coiling phagocytosis is the preferential phagocytic mechanism for Borrelia burgdorferi. Infect Immun 60:4205–4212PubMedPubMedCentralCrossRefGoogle Scholar
  60. Sharma G, Valenta DT, Altman Y, Harvey S, Xie H, Mitragotri S, Smith JW (2010) Polymer particle shape independently influences binding and internalization by macrophages. J Control Release 147(3):408–412PubMedPubMedCentralCrossRefGoogle Scholar
  61. Stefan J (1891) On the theory of ice formation, particularly in the polar seas (Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere). Annalen der Physik und Chemie 42:269–286CrossRefGoogle Scholar
  62. Swanson JA (2008) Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol 9(8):639–649PubMedPubMedCentralCrossRefGoogle Scholar
  63. Tabata Y, Ikada Y (1988) Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials 9(4):356–362PubMedCrossRefPubMedCentralGoogle Scholar
  64. The Human Brain Project (2013) https://www.humanbrain project.eu/en/
  65. Tindall MJ, Porter SL, Maini PK, Gaglia G, Armitage JP (2008) Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell. Bull Math Biol 70(6):1525–1569PubMedCrossRefPubMedCentralGoogle Scholar
  66. Tindall MJ, Maini PK, Porter SL, Armitage JP (2008) Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations. Bull Math Biol 70(6):1570–1607PubMedCrossRefPubMedCentralGoogle Scholar
  67. Tollis S, Dart AE, Tzircotis G, Endres RG (2010) The zipper mechanism in phagocytosis: energetic requirements and variability in phagocytic cup shape. BMC Syst Biol 4:149–165PubMedPubMedCentralCrossRefGoogle Scholar
  68. Underhill DM, Ozinsky A (2002) Phagocytosis of microbes: Complexity in action. Annu Rev Immunol 20:825–852PubMedCrossRefPubMedCentralGoogle Scholar
  69. van Zon JS, Tzircotis G, Caron E, Howard M (2009) A mechanical bottleneck explains the variation in cup growth during FcγR phagocytosis. Mol Syst Biol 5:298–309PubMedPubMedCentralCrossRefGoogle Scholar
  70. Voit EO, Martens HA, Omholt SW (2015) 150 years of the mass action law. PLoS Comput Biol 11(1):e1004012PubMedPubMedCentralCrossRefGoogle Scholar
  71. Vonna L, Wiedemann A, Aepfelbacher M, Sackmann E (2007) Micromechanics of filopodia mediated capture of pathogens by macrophages. Eur Biophys J 36:145–151PubMedCrossRefPubMedCentralGoogle Scholar
  72. Zhang Y, Hoppe AD, Swanson JA (2010) Coordination of Fc receptor signaling regulates cellular commitment to phagocytosis. Proc Natl Acad Sci USA 107(45):19332–19337PubMedCrossRefPubMedCentralGoogle Scholar
  73. Zigmond SH, Hirsch JG (1972) Effects of cytochalasin B on polymorphonuclear leucocyte locomotion, phagocytosis and glycolysis. Exp Cell Res 73:383–393PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Living Systems InstituteUniversity of ExeterExeterUK

Personalised recommendations