Advertisement

Introduction

  • Muhammad Ali Masood CheemaEmail author
  • John Edward Fletcher
Chapter
  • 11 Downloads
Part of the Power Systems book series (POWSYS)

Abstract

The application areas for linear permanent magnet synchronous motors (linear PMSMs) are increasing to include automation of manufacturing processes, transportation, renewable energy devices, and pumping applications.

References

  1. 1.
    I. Boldea, S.A. Nasar, Linear Electric Actuaters and Gnerators (Cambridge University Press Inc., New York, 1997)Google Scholar
  2. 2.
    I. Takahashi, T. Noguchi, A new quick-response and high-efficiency control strategy of an induction motor. IEEE Trans. Ind. Appl. IA(22), 820–827 (1986)CrossRefGoogle Scholar
  3. 3.
    I. Takahashi, Y. Ohmori, High-performance direct torque control of an induction motor. IEEE Trans. Ind. Appl. 25, 257–264 (1989)CrossRefGoogle Scholar
  4. 4.
    U. Baader, M. Depenbrock, G. Gierse, Direct self control (DSC) of inverter-fed induction machine: a basis for speed control without speed measurement. IEEE Trans. Ind. Appl. 28, 581–588 (1992)CrossRefGoogle Scholar
  5. 5.
    C. French, P. Acarnley, Direct torque control of permanent magnet drives. IEEE Trans. Ind. Appl. 32, 1080–1088 (1996)CrossRefGoogle Scholar
  6. 6.
    M.F. Rahman, L. Zhong, W.Y. Hu, K.W. Lim, M.A. Rahman, A direct torque controller for permanent magnet synchronous motor drives, in Proceedings of the Electric Machines and Drives Conference Record (1997), pp. TD1/2.1–TD1/2.3Google Scholar
  7. 7.
    L. Zhong, M.F. Rahman, W.Y. Hu, K.W. Lim, Analysis of direct torque control in permanent magnet synchronous motor drives. IEEE Trans. Power Electron. 12, 528–536 (1997)CrossRefGoogle Scholar
  8. 8.
    M.F. Rahman, L. Zhong, L. Khiang Wee, A direct torque-controlled interior permanent magnet synchronous motor drive incorporating field weakening. IEEE Trans. Ind. Appl. 34, 1246–1253 (1998)CrossRefGoogle Scholar
  9. 9.
    Y. Hu, C. Tian, Y. Gu, Z. You, L.X. Tang, M.F. Rahman, In-depth research on direct torque control of permanent magnet synchronous motor, in Proceedings of the Annual Conference of the Industrial Electronics Society (IECON), vol. 3 (2002), pp. 1060–1065Google Scholar
  10. 10.
    J. Linni, S. Liming, Stability analysis for direct torque control of permanent magnet synchronous motors, in Proceedings of the International Conference on Electrical Machines and Systems (ICEMS) (2005), pp. 1672–1675Google Scholar
  11. 11.
    M.E. Haque, M.F. Rahman, Incorporating control trajectories with the direct torque control scheme of interior permanent magnet synchronous motor drive. IET Electr. Power Appl. 3, 93–101 (2009)CrossRefGoogle Scholar
  12. 12.
    M.F. Rahman, M.E. Haque, T. Lixin, Z. Limin, Problems associated with the direct torque control of an interior permanent-magnet synchronous motor drive and their remedies. IEEE Trans. Ind. Electron. 51, 799–809 (2004)CrossRefGoogle Scholar
  13. 13.
    T. Lixin, Z. Limin, M.F. Rahman, H. Yuwen, A novel direct torque controlled interior permanent magnet synchronous machine drive with low ripple in flux and torque and fixed switching frequency. IEEE Trans. Power Electron. 19, 346–354 (2004)CrossRefGoogle Scholar
  14. 14.
    X. Zhuang, M. Faz Rahman, Direct torque and flux regulation of an IPM synchronous motor drive using variable structure control approach. IEEE Trans. Power Electron. 22, pp. 2487–2498 (2007)CrossRefGoogle Scholar
  15. 15.
    G. Foo, C.S. Goon, M.F. Rahman, Analysis and design of the SVM direct torque and flux controlled IPM synchronous motor drive, in Proceedings of the Australasian Universities Power Engineering Conference (AUPEC) (2009), pp. 1–6Google Scholar
  16. 16.
    Y. Cho, D.-H. Kim, K.-B. Lee, Y.I. Lee, J.-H. Song, Torque ripple reduction and fast torque response strategy of direct torque control for permanent-magnet synchronous motor, in Proceeding of the International Symposium on Industrial Electronics (ISIE) (2013), pp. 1–6Google Scholar
  17. 17.
    C. Lascu, A.M. Trzynadlowski, Combining the principles of sliding mode, direct torque control, and space-vector modulation in a high-performance sensorless AC drive. IEEE Trans. Ind. Appl. 40, 170–177 (2004)CrossRefGoogle Scholar
  18. 18.
    Z. Yongchang, Z. Jianguo, X. Wei, G. Youguang, A simple method to reduce torque ripple in direct torque-controlled permanent-magnet synchronous motor by using vectors with variable amplitude and angle. IEEE Trans. Ind. Electron. 58, 2848–2859 (2011)CrossRefGoogle Scholar
  19. 19.
    Z. Hao, X. Xi, L. Yongdong, Torque ripple reduction of the torque predictive control scheme for permanent-magnet synchronous motors. IEEE Trans. Ind. Electron. 59, 871–877 (2012)Google Scholar
  20. 20.
    G.S. Buja, M.P. Kazmierkowski, Direct torque control of PWM inverter-fed AC motors—a survey. IEEE Trans. Ind. Electron. 51, 744–757 (2004)CrossRefGoogle Scholar
  21. 21.
    T. Geyer, G. Papafotiou, M. Morari, Model predictive direct torque control-part I-concept, algorithm, and analysis. IEEE Trans. Ind. Electron. 56, 1894–1905 (2009)CrossRefGoogle Scholar
  22. 22.
    M. Preindl, S. Bolognani, Model predictive direct torque control with finite control set for PMSM drive systems, part 1: maximum torque per ampere operation. IEEE Trans. Ind. Informat. pp. 1–1 (2013)Google Scholar
  23. 23.
    M. Preindl, S. Bolognani, model predictive direct torque control with finite control set for PMSM drive systems, part 2: field weakening operation. IEEE Trans. Ind. Informat. 9, 648–657 (2013)CrossRefGoogle Scholar
  24. 24.
    Z. Ma, S. Saeidi, R. Kennel, FPGA implementation of model predictive control with constant switching frequency for PMSM drives. IEEE Trans. Ind. Informat. 10, 2055–2063 (2014)CrossRefGoogle Scholar
  25. 25.
    B. Boazzo, G. Pellegrino, Model-based direct flux vector control of permanent-magnet synchronous motor drives. IEEE Trans. Ind. Appl. 51, 3126–3136 (2015)CrossRefGoogle Scholar
  26. 26.
    Y. Cho, K.B. Lee, J.H. Song, Y.I. Lee, Torque-ripple minimization and fast dynamic scheme for torque predictive control of permanent-magnet synchronous motors. IEEE Trans. Power Electron. 30, 2182–2190 (2015)CrossRefGoogle Scholar
  27. 27.
    F. Wang, S. Li, X. Mie, W. Xie, J. Rodriguez, R.M. Kennel, Model-based predictive direct control strategies for electrical drives: an experimental evaluation of PTC and PCC methods. IEEE Trans. Ind. Informat. 11, 671–681 (2015)CrossRefGoogle Scholar
  28. 28.
    M. Preindl, S. Bolognani, Optimal state reference computation with constrained MTPA criterion for PM motor drives. IEEE Trans. Power Electron. 30, 4524–4535 (2015)CrossRefGoogle Scholar
  29. 29.
    W. Xie, X. Wang, F. Wang, W. Xu, R.M. Kennel, D. Gerling, R.D. Lorenz, Finite-control-set model predictive torque control with a deadbeat solution for PMSM drives. IEEE Trans. Ind. Electron. 62, 5402–5410 (2015)CrossRefGoogle Scholar
  30. 30.
    M. Abroshan, K. Malekian, J. Milimonfared, B.A. Varmiab, An optimal direct thrust force control for interior permanent magnet linear synchronous motors incorporating field weakening, in Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion(SPEEDAM) (2008), pp. 130-135Google Scholar
  31. 31.
    S. Cheng-Chung, H. Yi-Sheng, Based on direct thrust control for linear synchronous motor systems. IEEE Trans. Ind. Electron. 56, 1629–1639 (2009)CrossRefGoogle Scholar
  32. 32.
    J. Cui, C. Wang, J. Yang, L. Liu, Analysis of direct thrust force control for permanent magnet linear synchronous motor, in Proceedings of the World Congress on Intelligent Control and Automation(WCICA), vol. 5 (2004), pp. 4418–4421Google Scholar
  33. 33.
    J. Cui, C. Wang, J. Yang, D. Yu, Research on force and direct thrust control for a permanent magnet synchronous linear motor, in Proceedings of the Annual Conference of the Industrial Electronics Society (IECON) (2004), pp. 2269–2272Google Scholar
  34. 34.
    A. Mohammadpour, L. Parsa, SVM-based direct thrust control of permanent magnet linear synchronous motor with reduced force ripple, in Proceedings of the International Symposium on Industrial Electronics (ISIE) (2011), pp. 756–760Google Scholar
  35. 35.
    M.A.M. Cheema, J. Fletcher, M.F. Rahman, D. Xiao, Modified direct thrust control of linear permanent magnet motors with sensorless speed estimation, in Proceedings of the Annual Conference of the Industrial Electronics Society (IECON) (2012), pp. 1908–1914Google Scholar
  36. 36.
    L. Guan, J. Yang, J. Cui, Direct thrust control approach using adaptive variable structure for permanent magnet linear synchronous motor, in Proceedings of the International Conference on Control and Automation (ICCA) (2007), pp. 2217–2220Google Scholar
  37. 37.
    Y. Junyou, H. Guofeng, C. Jiefan, Analysis of PMLSM direct thrust control system based on sliding mode variable structure, in Proceedings of the International Power Electronics and Motion Control Conference (IPEMC) (2006), pp. 1–5Google Scholar
  38. 38.
    Y.S. Huang, C.C. Sung, Implementation of sliding mode controller for linear synchronous motors based on direct thrust control theory. IET Control Theory Appl. 4, 326–338 (2010)CrossRefGoogle Scholar
  39. 39.
    Z. Jihao, Z. Shan’an, Fuzzy logic direct force control of surface permanent magnet linear synchronous motors without speed sensors, in Proceedings of the World Congress on Intelligent Control and Automation (WCICA) (2004), pp. 4491–4495Google Scholar
  40. 40.
    Y. Inoue, S. Morimoto, M. Sanada, Control method suitable for direct-torque-control-based motor drive system satisfying voltage and current limitations. IEEE Trans. Ind. Appl. 48, 970–976 (2012)CrossRefGoogle Scholar
  41. 41.
    S. Mathapati, J. Bocker, Analytical and offline approach to select optimal hysteresis bands of DTC for PMSM. IEEE Trans. Ind. Electron. 60, 885–895 (2013)CrossRefGoogle Scholar
  42. 42.
    T.G. Habetler, F. Profumo, M. Pastorelli, L.M. Tolbert, Direct torque control of induction machines using space vector modulation. IEEE Trans. Ind. Appl. 28, 1045–1053 (1992)CrossRefGoogle Scholar
  43. 43.
    B.H. Kenny, R.D. Lorenz, Stator- and rotor-flux-based deadbeat direct torque control of induction machines. IEEE Trans. Ind. Appl. 39, 1093–1101 (2003)CrossRefGoogle Scholar
  44. 44.
    E. Flach, R. Hoffmann, P. Mutschler, Direct mean torque control of an induction motor. Proc. EPE 3, 672–677 (1997)Google Scholar
  45. 45.
    M. Pacas, J. Weber, Predictive direct torque control for the PM synchronous machine. IEEE Trans. Ind. Electron. 52(5), 1350–1356 (2005)CrossRefGoogle Scholar
  46. 46.
    K. Jun-Koo, S. Seung-Ki, New direct torque control of induction motor for minimum torque ripple and constant switching frequency. IEEE Trans. Ind. Appl. 35, 1076–1082 (1999)CrossRefGoogle Scholar
  47. 47.
    S. Kuo-Kai, L. Juu-Kuh, P. Van-Truong, Y. Ming-Ji, W. Te-Wei, Global minimum torque ripple design for direct torque control of induction motor drives. IEEE Trans. Ind. Electron. 57, 3148–3156 (2010)CrossRefGoogle Scholar
  48. 48.
    Z. Yongchang, Z. Jianguo, Direct torque control of permanent magnet synchronous motor with reduced torque ripple and commutation frequency. IEEE Trans. Power Electron. 26, 235–248 (2011)CrossRefGoogle Scholar
  49. 49.
    Y. Ren, Z.Q. Zhu, J. Lue, Direct torque control of permanent-magnet synchronous machine drives with a simple duty ratio regulator. IEEE Trans. Ind. Electron. 61, 5249–5258 (2014)CrossRefGoogle Scholar
  50. 50.
    F. Niu, K. Li, Y. Wang, Direct torque control for permanent-magnet synchronous machines based on duty ratio modulation. IEEE Trans. Ind. Electron. 62, 6160–6170 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Research and Special DesignNorthern Transformer CorporationMapleCanada
  2. 2.The University of New South WalesSydneyAustralia

Personalised recommendations