Threshold Effect Indicator Analysis for Template-Based Processing in Microwave Imaging

  • Aleksey S. GvozdarevEmail author
  • Tatyana K. Artyomova
Part of the Intelligent Systems Reference Library book series (ISRL, volume 184)


A set of methods indicating the threshold signal-to-noise ratio in signal parameter estimation is analyzed. The approaches rely on the behavior of the obtained estimates’ variances lower bounds specifically the Cramer-Rao bound, finite point Barankin and Abel bounds, and the proposed “hybrid” indicator. Validation of proposed methods is illustrated with an example of cumulative phase difference estimation in template phase matching method for microwave imaging applications.


Threshold Estimation Variance Signal-to-noise ratio Lower bounds Cramer-Rao bound Baranking bound Abel bound 


  1. 1.
    de Ridder, D., Tax, D.M.J., Lei, B., Xu, G., Feng, M., Zou, Y., van der Heijden, F.: Classification, Parameter Estimation and State Estimation: An Engineering Approach Using MATLAB, 2nd edn. Wiley, Hoboken, NJ (2017)CrossRefGoogle Scholar
  2. 2.
    Aster, R.C., Borchers, B., Thurber, C.H.: Parameter Estimation and Inverse Problems. 3th edn. Academic Press (2012)Google Scholar
  3. 3.
    Kay, S.M.: Fundamentals of Statistical Signal Processing, vol. 1. Prentice Hall, NY (1993)Google Scholar
  4. 4.
    Harry, L., Van Trees, K.L.: Bell Bayesian Bounds for Parameter Estimation and Nonlinear Filtering and Tracking. Wiley, IEEE Press (2007)Google Scholar
  5. 5.
    Chaumette, E., Renaux, A., Larzabal, P.: New trends in deterministic lower bounds and SNR threshold estimation: from derivable bounds to conjectural bounds. In: IEEE Sensor Array Multichannel Workshop, Jerusalem, Israel, pp. 121–124 (2010)Google Scholar
  6. 6.
    Chaumette, E., Renaux, A., Larzabal, P.: Lower bounds on mean square error derived from mixture of linear and non-linear transformations of the unbiasedness definition. In: IEEE International Conference on Acoustics, Speech, Signal Process. Taipei, Taiwan, pp. 3045–3048 (2009)Google Scholar
  7. 7.
    Renaux, A., Najjar-Atallah, L., Forster, P., Larzabal, P.: A useful form of the Abel bound and its application to estimator threshold prediction. IEEE Trans. Sig. Process. 55(5), 1001–1007 (2007)MathSciNetzbMATHGoogle Scholar
  8. 8.
    McAulay, R.J., Seidman, L.P.: A useful form of the Barankin lower bound and its application to PPM threshold analysis. IEEE Trans. Inform. Theory, IT 15(2), 273–279 (1969)Google Scholar
  9. 9.
    Gvozdaryev, A.S.: Threshold signal-to-noise ratio analysis in application for integral-phase difference estimation problem. In: 23rd International Crimean Conference on Microwave & Telecommunication Technology, Sevastopol, pp. 951–952 (2013)Google Scholar
  10. 10.
    Artyomova, T.K., Gvozdaryev, A.S.: Minimum-phase method for the reference estimation of object size in problems of RF holography. Izv. Vyssh. Uchebn. Zaved. Radioelektron. 54(4), 22–30 (2011)Google Scholar
  11. 11.
    Gvozdaryev, A.S.: Statistical measures of moment estimator for integral phase difference for application of reference phase method. In: 23rd International Crimean Conference Microwave & Telecommunication Technology. Sevastopol, pp. 1224–1225 (2013)Google Scholar
  12. 12.
    Gvozdaryev, A.S., Artyomova, T.K, Artyomov, K.S.: The comparative study of integral phase estimation with method of moments and maximum likelihood procedures. J. Radio Electron. 12 (in Russian) (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Infocommunications and RadiophysicsP.G. Demidov Yaroslavl State UniversityYaroslavlRussian Federation

Personalised recommendations