Internet of Things for Enhanced Living Environments, Health and Well-Being: Technologies, Architectures and Systems

  • Gonçalo MarquesEmail author
  • Jagriti Saini
  • Ivan Miguel Pires
  • Nuno Miranda
  • Rui Pitarma
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1132)


Internet of Things (IoT) stands as a concept where things are linked to the Internet, incorporate data collection capabilities and cooperation features between them. Ambient Assisted Living (AAL) is closely related to the necessity of pervasive healthcare supervision, and his main aim is to contribute to the independence and well-being of older adults using Information and Communication Technologies. At 2050 20% of the world population will be age 60 or older, which will lead to significant consequences for public health such as an increase of diseases, health care costs, shortage of caregivers, and dependency. IoT and AAL architectures enhancements will contribute to the development of personalized healthcare systems that incorporate real-time monitoring features for environmental quality and people’s health status for enhanced living environments and well-being. Scientific developments turn possible to create novel and innovative instruments to empower real-time healthcare supervising solutions for decision making in the management of several syndromes. This paper provides a review summary of the main technologies, architectures, and systems based on IoT and AAL for enhanced living environments. The design, social, and ethical challenges for the implementation of efficient and effective systems for enhanced living environments and future directions are also discussed.


Ambient Assisted Living Enhanced living environments Indoor environment quality Internet of Things Smart systems 


  1. 1.
    Marques, G., Pitarma, R., Garcia, N.M., Pombo, N.: Internet of Things architectures, technologies, applications, challenges, and future directions for enhanced living environments and healthcare systems: a review. Electronics 8(10), 1081 (2019)CrossRefGoogle Scholar
  2. 2.
    Koleva, P., Tonchev, K., Balabanov, G., Manolova, A., Poulkov, V.: Challenges in designing and implementation of an effective Ambient Assisted Living system. In: 2015 12th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services (TELSIKS), pp. 305–308 (2015)Google Scholar
  3. 3.
    Marques, G., Pitarma, R.: IAQ evaluation using an IoT CO2 monitoring system for enhanced living environments. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) Trends and Advances in Information Systems and Technologies, vol. 746, pp. 1169–1177. Springer International Publishing, Cham (2018)CrossRefGoogle Scholar
  4. 4.
    Giusto, D. (ed.): The Internet of Things: 20th Tyrrhenian Workshop on Digital Communications. Springer, New York (2010)Google Scholar
  5. 5.
    Marques, G., Pitarma, R.: Monitoring and control of the indoor environment. In: 2017 12th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6 (2017)Google Scholar
  6. 6.
    Marques, G., Pitarma, R.: Monitoring energy consumption system to improve energy efficiency. In: Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S. (eds.) Recent Advances in Information Systems and Technologies, vol. 570, pp. 3–11. Springer International Publishing, Cham (2017)CrossRefGoogle Scholar
  7. 7.
    Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)CrossRefGoogle Scholar
  8. 8.
    Khanna, A., Goyal, R., Verma, M., Joshi, D.: Intelligent traffic management system for smart cities. In: Singh, P.K., Paprzycki, M., Bhargava, B., Chhabra, J.K., Kaushal, N.C., Kumar, Y. (eds.) Futuristic Trends in Network and Communication Technologies, vol. 958, pp. 152–164. Springer Singapore, Singapore (2019)CrossRefGoogle Scholar
  9. 9.
    Marques, G.: Ambient assisted living and Internet of Things. In: Cardoso, P.J.S., Monteiro, J., Semião, J., Rodrigues, J.M.F. (eds.) Harnessing the Internet of Everything (IoE) for Accelerated Innovation Opportunities, pp. 100–115. IGI Global, Hershey (2019)CrossRefGoogle Scholar
  10. 10.
    Walsh, P.J., Dudney, C.S., Copenhaver, E.D.: Indoor Air Quality. CRC Press, Boca Raton (1983)Google Scholar
  11. 11.
    Bruce, N., Perez-Padilla, R., Albalak, R.: Indoor air pollution in developing countries: a major environmental and public health challenge. Bull. World Health Organ. 78(9), 1078–1092 (2000)Google Scholar
  12. 12.
    Seguel, J.M., Merrill, R., Seguel, D., Campagna, A.C.: Indoor air quality. Am. J. Lifestyle Med. 11(4), 284–295 (2017)CrossRefGoogle Scholar
  13. 13.
    Butz, A.M.: A randomized trial of air cleaners and a health coach to improve indoor air quality for inner-city children with asthma and secondhand smoke exposure. Arch. Pediatr. Adolesc. Med. 165(8), 741 (2011)CrossRefGoogle Scholar
  14. 14.
    De Vito, S., et al.: Cooperative 3D air quality assessment with wireless chemical sensing networks. Procedia Eng. 25, 84–87 (2011)CrossRefGoogle Scholar
  15. 15.
    Dimitrievski, A., Zdravevski, E., Lameski, P., Trajkovik, V.: A survey of Ambient Assisted Living systems: challenges and opportunities. In: 2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, pp. 49–53 (2016)Google Scholar
  16. 16.
    El murabet, A., Anouar, A., Touhafi, A., Tahiri, A.: Towards an SOA architectural model for AAL-Paas design and implementation challenges. Int. J. Adv. Comput. Sci. Appl. 8(7), 52–56 (2017)Google Scholar
  17. 17.
    El murabet, A., Abtoy, A., Touhafi, A., Tahiri, A.: Ambient Assisted Living system’s models and architectures: a survey of the state of the art. J. King Saud Univ. - Comput. Inf. Sci. 32(1), 1–10 (2020)CrossRefGoogle Scholar
  18. 18.
    Choi, D., Choi, H., Shon, D.: Future changes to smart home based on AAL healthcare service. J. Asian Archit. Build. Eng. 18(3), 190–199 (2019)CrossRefGoogle Scholar
  19. 19.
    Rashidi, P., Mihailidis, A.: A survey on ambient-assisted living tools for older adults. IEEE J. Biomed. Health Inform. 17(3), 579–590 (2013)CrossRefGoogle Scholar
  20. 20.
    Moukas, A., Zacharia, G., Guttman, R., Maes, P.: Agent-mediated electronic commerce: an MIT media laboratory perspective. Int. J. Electron. Commer. 4(3), 5–21 (2000)CrossRefGoogle Scholar
  21. 21.
    De Silva, L.C., Morikawa, C., Petra, I.M.: State of the art of smart homes. Adv. Issues Artif. Intell. Pattern Recogn. Intell. Surveill. Syst. Smart Home Environ. 25(7), 1313–1321 (2012)Google Scholar
  22. 22.
    Wilson, C., Hargreaves, T., Hauxwell-Baldwin, R.: Smart homes and their users: a systematic analysis and key challenges. Pers. Ubiquit. Comput. 19(2), 463–476 (2015)CrossRefGoogle Scholar
  23. 23.
    Adib, F., Mao, H., Kabelac, Z., Katabi, D., Miller, R.C.: Smart homes that monitor breathing and heart rate. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Republic of Korea, pp. 837–846 (2015)Google Scholar
  24. 24.
    Pounds-Cornish, A., Holmes, A.: The iDorm - a practical deployment of grid technology. In: 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid, 2002, pp. 470–470 (2002)Google Scholar
  25. 25.
    Orpwood, R., Gibbs, C., Adlam, T., Faulkner, R., Meegahawatte, D.: The Gloucester smart house for people with dementia—user-interface aspects. In: Keates, S., Clarkson, J., Langdon, P., Robinson, P. (eds.) Designing a More Inclusive World, pp. 237–245. Springer, London (2004)CrossRefGoogle Scholar
  26. 26.
    Henkemans, O.B., Caine, K.E., Rogers, W.A., Fisk, A.D.: Medical monitoring for independent living: user-centered design of smart home technologies for older adults. In: Proceedings of Med-e-Tel Conference eHealth, Telemedicine and Health Information and Communication Technologies, pp. 18–20 (2007)Google Scholar
  27. 27.
    Anjum, A., Ilyas, M.U.: Activity recognition using smartphone sensors. In: Consumer Communications and Networking Conference (CCNC), 2013, pp. 914–919. IEEE (2013)Google Scholar
  28. 28.
    Shoaib, M., Scholten, H., Havinga, P.J.M.: Towards physical activity recognition using smartphone sensors. In: 2013 IEEE 10th International Conference on Ubiquitous Intelligence and Computing and 10th International Conference on Autonomic and Trusted Computing (UIC/ATC), pp. 80–87 (2013)Google Scholar
  29. 29.
    Eren, H., Makinist, S., Akin, E., Yilmaz, A.: Estimating driving behavior by a smartphone. In: 2012 IEEE Intelligent Vehicles Symposium (IV), pp. 234–239 (2012)Google Scholar
  30. 30.
    Faragher, R.M., Sarno, C., Newman, M.: Opportunistic radio SLAM for indoor navigation using smartphone sensors. In: 2012 IEEE/ION Position Location and Navigation Symposium (PLANS), pp. 120–128 (2012)Google Scholar
  31. 31.
    Lloret, J., Canovas, A., Sendra, S., Parra, L.: A smart communication architecture for ambient assisted living. IEEE Commun. Mag. 53(1), 26–33 (2015)CrossRefGoogle Scholar
  32. 32.
    Parra, L., Sendra, S., Jiménez, J., Lloret, J.: Multimedia sensors embedded in smartphones for ambient assisted living and e-health. Multimedia Tools Appl. 75(21), 1–27 (2015)Google Scholar
  33. 33.
    Bisio, I., Lavagetto, F., Marchese, M., Sciarrone, A.: Smartphone-centric ambient assisted living platform for patients suffering from co-morbidities monitoring. IEEE Commun. Mag. 53(1), 34–41 (2015)CrossRefGoogle Scholar
  34. 34.
    Mishra, D., Mishra, A.: Self-optimization in LTE: an approach to reduce call drops in mobile network. In: Singh, P.K., Paprzycki, M., Bhargava, B., Chhabra, J.K., Kaushal, N.C., Kumar, Y. (eds.) Futuristic Trends in Network and Communication Technologies, vol. 958, pp. 382–395. Springer Singapore, Singapore (2019)CrossRefGoogle Scholar
  35. 35.
    Leone, A., Rescio, G., Siciliano, P.: A near field communication-based platform for mobile ambient assisted living applications. In: Andò, B., Siciliano, P., Marletta, V., Monteriù, A. (eds.) ambient assisted living, vol. 11, pp. 125–132. Springer, Cham (2015)CrossRefGoogle Scholar
  36. 36.
    Yan, K., et al.: Innovation through wearable sensors to collect real-life data among pediatric patients with cardiometabolic risk factors. Int. J. Pediatr. 2014, 9 (2014)CrossRefGoogle Scholar
  37. 37.
    Matiko, J.W., Wei, Y., Torah, R., Grabham, N., Paul, G., Beeby, S., Tudor, J.: Wearable EEG headband using printed electrodes and powered by energy harvesting for emotion monitoring in ambient assisted living. Smart Mater. Struct. 24(12), 125028 (2015)CrossRefGoogle Scholar
  38. 38.
    Zhu, C., Sheng, W., Liu, M.: Wearable sensor-based behavioral anomaly detection in smart assisted living systems. IEEE Trans. Autom. Sci. Eng. 12(4), 1225–1234 (2015)CrossRefGoogle Scholar
  39. 39.
    López, S.A., Corno, F., De Russis, L.: Supporting caregivers in assisted living facilities for persons with disabilities: a user study. Univers. Access Inf. Soc. 14(1), 133–144 (2015)CrossRefGoogle Scholar
  40. 40.
    Acampora, G., Cook, D.J., Rashidi, P., Vasilakos, A.V.: A Survey on Ambient Intelligence in Health Care. Proc. IEEE Inst. Electr. Electron. Eng. 101(12), 2470–2494 (2013)CrossRefGoogle Scholar
  41. 41.
    Bandodkar, A.J., Wang, J.: Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 32(7), 363–371 (2014)CrossRefGoogle Scholar
  42. 42.
    Saracchini, R.F.V., Catalina, C.A.: An augmented reality platform for wearable assisted living systems. J. Theor. Appl. Comput. Sci. 9(1), 56–79 (2015)Google Scholar
  43. 43.
    Páez, D., de Buenaga Rodríguez, M., Sánz, E., Villalba, M., Gil, R.: Big data processing using wearable devices for wellbeing and healthy activities promotion. In: Cleland, I., Guerrero, L., Bravo, J. (eds.) Ambient Assisted Living. ICT-based Solutions in Real Life Situations, vol. 9455, pp. 196–205. Springer, Cham (2015)Google Scholar
  44. 44.
    Stavropoulos, T.G., Meditskos, G., Andreadis, S., Kompatsiaris, I.: Real-time health monitoring and contextualised alerts using wearables. In: 2015 International Conference on Interactive Mobile Communication Technologies and Learning (IMCL), pp. 358–363 (2015)Google Scholar
  45. 45.
    Clifton, L., Clifton, D.A., Pimentel, M.A.F., Watkinson, P.J., Tarassenko, L.: Predictive monitoring of mobile patients by combining clinical observations with data from wearable sensors. IEEE J. Biomed. Health Inform. 18(3), 722–730 (2014)CrossRefGoogle Scholar
  46. 46.
    Sano, A., et al.: Recognizing academic performance, sleep quality, stress level, and mental health using personality traits, wearable sensors and mobile phones. In: 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 1–6 (2015)Google Scholar
  47. 47.
    Whitmore, A., Agarwal, A., Da Xu, L.: The Internet of Things—a survey of topics and trends. Inf. Syst. Front. 17(2), 261–274 (2015)CrossRefGoogle Scholar
  48. 48.
    Sachdeva, S., Kakkar, A.: Implementation of AES-128 using multiple cipher keys. In: Singh, P.K., Paprzycki, M., Bhargava, B., Chhabra, J.K., Kaushal, N.C., Kumar, Y. (eds.) Futuristic Trends in Network and Communication Technologies, vol. 958, pp. 3–16. Springer Singapore, Singapore (2019)CrossRefGoogle Scholar
  49. 49.
    Vora, J., Kaneriya, S., Tanwar, S., Tyagi, S., Kumar, N., Obaidat, M.S.: TILAA: tactile internet-based Ambient Assistant Living in fog environment. Future Gener. Comput. Syst. 98, 635–649 (2019)CrossRefGoogle Scholar
  50. 50.
    Budhiraja, I., Tyagi, S., Tanwar, S., Kumar, N., Rodrigues, J.J.P.C.: Tactile Internet for smart communities in 5G: an insight for NOMA-based solutions. IEEE Trans. Ind. Inform. 15(5), 3104–3112 (2019)CrossRefGoogle Scholar
  51. 51.
    Hathaliya, J.J., Tanwar, S., Tyagi, S., Kumar, N.: Securing electronics healthcare records in Healthcare 4.0: a biometric-based approach. Comput. Electr. Eng. 76, 398–410 (2019)CrossRefGoogle Scholar
  52. 52.
    Kumari, A., Tanwar, S., Tyagi, S., Kumar, N.: Fog computing for Healthcare 4.0 environment: Opportunities and challenges. Comput. Electr. Eng. 72, 1–13 (2018)CrossRefGoogle Scholar
  53. 53.
    Kumari, A., Tanwar, S., Tyagi, S., Kumar, N.: Verification and validation techniques for streaming big data analytics in Internet of Things environment. IET Netw. 8(3), 155–163 (2019)CrossRefGoogle Scholar
  54. 54.
    Cunha, M., Fuks, H.: AmbLEDs para ambientes de moradia assistidos em cidades inteligentes. In: Proceedings of the 13th Brazilian Symposium on Human Factors in Computing Systems, Foz do Igua & ccedil; u, Brazil, pp. 409–412 (2014)Google Scholar
  55. 55.
    Stankovic, J.A.: Research Directions for the Internet of Things. IEEE Internet Things J. 1(1), 3–9 (2014)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Suryadevara, N.K., Kelly, S., Mukhopadhyay, S.C.: Ambient Assisted Living environment towards Internet of Things using multifarious sensors integrated with XBee platform. In: Mukhopadhyay, S.C. (ed.) Internet of Things, vol. 9, pp. 217–231. Springer (2014)Google Scholar
  57. 57.
    Zhu, N., et al.: Bridging e-health and the Internet of Things: the SPHERE project. IEEE Intell. Syst. 30(4), 39–46 (2015)CrossRefGoogle Scholar
  58. 58.
    Cubo, J., Nieto, A., Pimentel, E.: A cloud-based Internet of Things platform for Ambient Assisted Living. Sensors 14(8), 14070–14105 (2014)CrossRefGoogle Scholar
  59. 59.
    Parada, R., Melia-Segui, J., Morenza-Cinos, M., Carreras, A., Pous, R.: Using RFID to detect interactions in Ambient Assisted Living environments. IEEE Intell. Syst. 30(4), 16–22 (2015)CrossRefGoogle Scholar
  60. 60.
    Ray, P.P.: Home Health Hub Internet of Things (H3IoT): an architectural framework for monitoring health of elderly people. In: 2014 International Conference on Science Engineering and Management Research (ICSEMR), pp. 1–3 (2014)Google Scholar
  61. 61.
    Pitarma, R., Marques, G., Ferreira, B.R.: Monitoring indoor air quality for enhanced occupational health. J. Med. Syst. 41(2), 23 (2017)CrossRefGoogle Scholar
  62. 62.
    Marques, G., Pitarma, R.: Health informatics for indoor air quality monitoring. In: 2016 11th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6 (2016)Google Scholar
  63. 63.
    Marques, G., Roque Ferreira, C., Pitarma, R.: A system based on the Internet of Things for real-time particle monitoring in buildings. Int. J. Environ. Res. Public. Health 15(4), 821 (2018)CrossRefGoogle Scholar
  64. 64.
    Feria, F., Salcedo Parra, O.J., Reyes Daza, B.S.: Design of an architecture for medical applications in IoT. In: Luo, Y. (ed.) Cooperative Design, Visualization, and Engineering, vol. 9929, pp. 263–270. Springer, Cham (2016)CrossRefGoogle Scholar
  65. 65.
    Ray, P.P.: Internet of Things for smart agriculture: Technologies, practices and future direction. J. Ambient Intell. Smart Environ. 9(4), 395–420 (2017)CrossRefGoogle Scholar
  66. 66.
    Matz, J.R., Wylie, S., Kriesky, J.: Participatory air monitoring in the midst of uncertainty: residents’ experiences with the speck sensor. Engag. Sci. Technol. Soc. 3, 464 (2017)CrossRefGoogle Scholar
  67. 67.
    Demuth, D., Nuest, D., Bröring, A., Pebesma, E.: The airquality sensebox. In: EGU General Assembly Conference Abstracts, vol. 15 (2013)Google Scholar
  68. 68.
    Marques, G., Pitarma, R.: A cost-effective air quality supervision solution for enhanced living environments through the Internet of Things. Electronics 8(2), 170 (2019)CrossRefGoogle Scholar
  69. 69.
    G. Marques, C. R. Ferreira, and R. Pitarma, “Indoor Air Quality Assessment Using a CO2 Monitoring System Based on Internet of Things,” J. Med. Syst., vol. 43, no. 3, Mar. 2019Google Scholar
  70. 70.
    Marques, G., Pitarma, R.: Monitoring and control of the indoor environment. In: 2017 12th Iberian Conference on Information Systems and Technologies (CISTI), Lisbon, Portugal, pp. 1–6 (2017)Google Scholar
  71. 71.
    Marques, G., Pitarma, R.: mHealth: indoor environmental quality measuring system for enhanced health and well-being based on Internet of Things. J. Sens. Actuator Netw. 8(3), 43 (2019)CrossRefGoogle Scholar
  72. 72.
    Lohani, D., Acharya, D.: Smartvent: a context aware IoT system to measure indoor air quality and ventilation rate. In: 2016 17th IEEE International Conference on Mobile Data Management (MDM), vol. 2, pp. 64–69 (2016)Google Scholar
  73. 73.
    Mantha, B.R., Feng, C., Menassa, C.C., Kamat, V.R.: Real-time building energy and comfort parameter data collection using mobile indoor robots. In: Proceedings of the International Symposium on Automation and Robotics in Construction Presented at the ISARC, vol. 32, p. 1 (2015)Google Scholar
  74. 74.
    Srivatsa, P., Pandhare, A.: Indoor air quality: IoT solution. In: National Conference, NCPCI, vol. 2016, p. 19 (2016)Google Scholar
  75. 75.
    Jin, M., Liu, S., Schiavon, S., Spanos, C.: Automated mobile sensing: towards high-granularity agile indoor environmental quality monitoring. Build. Environ. 127, 268–276 (2018)CrossRefGoogle Scholar
  76. 76.
    Salamone, F., Belussi, L., Danza, L., Galanos, T., Ghellere, M., Meroni, I.: Design and development of a nearable wireless system to control indoor air quality and indoor lighting quality. Sensors 17(5), 1021 (2017)CrossRefGoogle Scholar
  77. 77.
    Meena, M.J., Prabha, S.S., Pandian, S.: A cloud-based mobile robotic system for environmental monitoring. In: 2014 Asia-Pacific Conference on Computer Aided System Engineering (APCASE), South Kuta, Indonesia, pp. 122–126 (2014)Google Scholar
  78. 78.
    Bhattacharya, S., Sridevi, S., Pitchiah, R.: Indoor air quality monitoring using wireless sensor network, pp. 422–427 (2012)Google Scholar
  79. 79.
    Jara, A.J., Zamora, M.A., Skarmeta, A.F.: An Internet of Things—based personal device for diabetes therapy management in ambient assisted living (AAL). Pers. Ubiquit. Comput. 15(4), 431–440 (2011)CrossRefGoogle Scholar
  80. 80.
    Luo, J., Chen, Y., Tang, K., Luo, J.: Remote monitoring information system and its applications based on the Internet of Things. In: 2009 International Conference on Future BioMedical Information Engineering, FBIE 2009, pp. 482–485 (2009)Google Scholar
  81. 81.
    Swan, M.: Sensor mania! The Internet of Things, wearable computing, objective metrics, and the quantified self 2.0. J. Sens. Actuator Netw. 1(3), 217–253 (2012)CrossRefGoogle Scholar
  82. 82.
    Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)zbMATHCrossRefGoogle Scholar
  83. 83.
    Rahmani, A.-M., et al.: Smart e-health gateway: bringing intelligence to Internet-of-Things based ubiquitous healthcare systems, pp. 826–834 (2015)Google Scholar
  84. 84.
    Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of Things: vision, applications and research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012)CrossRefGoogle Scholar
  85. 85.
    Pang, Z., Zheng, L., Tian, J., Kao-Walter, S., Dubrova, E., Chen, Q.: Design of a terminal solution for integration of in-home health care devices and services towards the Internet-of-Things. Enterp. Inf. Syst. 9(1), 86–116 (2015)CrossRefGoogle Scholar
  86. 86.
    Lake, D., Milito, R., Morrow, M., Vangheese, R.: Internet of Things: architectural framework for eHealth security. J. ICT 3, 301–330 (2014)Google Scholar
  87. 87.
    Hassanalieragh, M., et al.: Health monitoring and management using Internet-of-Things (IoT) sensing with cloud-based processing: opportunities and challenges, pp. 285–292 (2015)Google Scholar
  88. 88.
    Dohr, A., Modre-Opsrian, R., Drobics, M., Hayn, D., Schreier, G.: The Internet of Things for Ambient Assisted Living, pp. 804–809 (2010)Google Scholar
  89. 89.
    Domingo, M.C.: Review: an overview of the Internet of Things for people with disabilities. J. Netw. Comput. Appl. 35(2), 584–596 (2012)CrossRefGoogle Scholar
  90. 90.
    Geman, O., et al.: Challenges and trends in Ambient Assisted Living and intelligent tools for disabled and elderly people. In: 2015 International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM), pp. 1–5 (2015)Google Scholar
  91. 91.
    Muñoz, D., Gutierrez, F.J., Ochoa, S.F.: Introducing Ambient Assisted Living technology at the home of the elderly: challenges and lessons learned. In: Cleland, I., Guerrero, L., Bravo, J. (eds.) Ambient Assisted Living. ICT-based Solutions in Real Life Situations, vol. 9455, pp. 125–136. Springer, Cham (2015)Google Scholar
  92. 92.
    Li, R., Lu, B., McDonald-Maier, K.D.: Cognitive Assisted Living Ambient system: a survey. Digit. Commun. Netw. 1(4), 229–252 (2015)CrossRefGoogle Scholar
  93. 93.
    Grguric, A., Gil, A.M.M., Huljenic, D., Car, Z., Podobnik, V.: A survey on user interaction mechanisms for enhanced living environments. In: Loshkovska, S., Koceski, S. (eds.) ICT Innovations 2015, vol. 399, pp. 131–141. Springer, Cham (2016)CrossRefGoogle Scholar
  94. 94.
    Monekosso, D.N., Florez-Revuelta, F., Remagnino, P.: Guest editorial special issue on ambient-assisted living: sensors, methods, and applications. IEEE Trans. Hum.-Mach. Syst. 45(5), 545–549 (2015)CrossRefGoogle Scholar
  95. 95.
    Felzmann, H., Murphy, K., Casey, D., Beyan, O.: Robot-assisted care for elderly with dementia: is there a potential for genuine end-user empowerment?. In: The Emerging Policy and Ethics of Human Robot Interaction (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Polytechnic Institute of GuardaGuardaPortugal
  2. 2.Instituto de Telecomunicações, Universidade da Beira InteriorCovilhãPortugal
  3. 3.National Institute of Technical Teacher’s Training and Research, ChandigarhChandigarhIndia
  4. 4.Altran PortugalLisbonPortugal
  5. 5.Polytechnic Institute of ViseuViseuPortugal

Personalised recommendations