Advertisement

Ionic Liquids Based Processing of Renewable and Sustainable Biopolymers

  • Sadia Naz
  • Maliha UroosEmail author
Chapter
  • 36 Downloads

Abstract

In view of immense potential of sustainable and renewable biopolymers for future biorefineries, development of green and carbon economic methods for their processing are highly demanding. Despite of numerous protocols established so far, innovations leading to sustainable methods for integration of multi-step volarization of low value biopolymeric feedstock are still highly concerned. One of such innovations is the ionic liquids based biorefinery concept for various advanced biofuels, valuable chemicals and other bio-products. Superiority of ionic liquids is due to their green, non-degradative, non-toxic, nono-volatile and chemically and thermally stable profile for upgrading renewable biopolymers based biorefinery. Some processing applications of ionic liquids for biofuels and fine chemicals production are covered in this chapter.

Keywords

Ionic liquids Renewable and sustainable biopolymers Cellulose Hemicellulose Lignin Closed loop biorefinery 

References

  1. 1.
    Alvira, P., Tomas-Pejo, E., Ballesteros, M. J., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology,101, 4851–4861.CrossRefGoogle Scholar
  2. 2.
    Moyer, P., Smith, M. D., Abdoulmoumine, N., Chmely, S. C., Smith, J. C., Petridis, L., et al. (2018). Relationship between lignocellulosic biomass dissolution and physicochemical properties of ionic liquids composed of 3-methylimidazolium cations and carboxylate anions. Physical Chemistry Chemical Physics,20, 2508–2516.CrossRefGoogle Scholar
  3. 3.
    Saha, B. C., & Cotta, M. A. (2006). Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnology Progress,22, 449–453.CrossRefGoogle Scholar
  4. 4.
    Brandt, A., Grasvik, J., Hallett, J. P., & Welton, T. (2013). Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry,15, 550–583.CrossRefGoogle Scholar
  5. 5.
    Karimi, K., Kheradmandinia, S., & Taherzadeh, M. J. (2006). Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass and Bioenergy,30, 247–253.CrossRefGoogle Scholar
  6. 6.
    Georgieva, T. I., Mikkelsen, M. J., & Ahring, B. K. (2008). Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. Applied Biochemistry and Biotechnology,145, 99–110.CrossRefGoogle Scholar
  7. 7.
    O’sullivan, A.C. (1997). Cellulose: The structure slowly unravels. Cellulose, 4, 173–207.CrossRefGoogle Scholar
  8. 8.
    Nishiyama, Y., Langan, P., & Chanzy, H. (2002). Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society,124, 9074–9082.CrossRefGoogle Scholar
  9. 9.
    Qian, X., Ding, S.-Y., Nimlos, M. R., Johnson, D. K., & Himmel, M. E. (2005). Atomic and electronic structures of molecular crystalline cellulose Iβ: a first-principles investigation. Macromolecules,38, 10580–10589.CrossRefGoogle Scholar
  10. 10.
    Jimenez de la Parra, C., Navarrete, A., Dolores Bermejo, M., & Jose Cocero, M. (2012). Patents review on lignocellulosic biomass processing using ionic liquids. Recent Patents on Engineering,6, 159–181.CrossRefGoogle Scholar
  11. 11.
    Timell, T. E. (1967). Recent progress in the chemistry of wood hemicelluloses. Wood Science and Technology,1, 45–70.CrossRefGoogle Scholar
  12. 12.
    Willfor, S., Sundberg, K., Tenkanen, M., & Holmbom, B. (2008). Spruce-derived mannans–A potential raw material for hydrocolloids and novel advanced natural materials. Carbohydrate Polymers,72, 197–210.CrossRefGoogle Scholar
  13. 13.
    Erdei, B., Barta, Z., Sipos, B., Reczey, K., Galbe, M., & Zacchi, G. (2010). Ethanol production from mixtures of wheat straw and wheat meal. Biotechnology for Biofuels,3, 16.CrossRefGoogle Scholar
  14. 14.
    Lee, J. (1997). Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology,56, 1–24.CrossRefGoogle Scholar
  15. 15.
    Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin biosynthesis. Annual Review of Plant Biology,54, 519–546.CrossRefGoogle Scholar
  16. 16.
    El Hage, R., Brosse, N., Chrusciel, L., Sanchez, C., Sannigrahi, P., & Ragauskas, A. (2009). Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polymer Degradation and Stability,94, 1632–1638.CrossRefGoogle Scholar
  17. 17.
    Klamt, A. (1995). Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. The Journal of Physical Chemistry,99, 2224–2235.CrossRefGoogle Scholar
  18. 18.
    Spange, S., Keutel, D., & Simon, F. (1992). Approaches to empirical donor-acceptor and polarity-parameters of polymers in solution and at interfaces. Journal de Chimie Physique,89, 1615–1622.CrossRefGoogle Scholar
  19. 19.
    Ogura, K., Ninomiya, K., Takahashi, K., Ogino, C., & Kondo, A. (2014). Pretreatment of Japanese cedar by ionic liquid solutions in combination with acid and metal ion and its application to high solid loading. Biotechnology for Biofuels,7, 120.CrossRefGoogle Scholar
  20. 20.
    Swatloski, R. P., Spear, S. K., Holbrey, J. D., & Rogers, R. D. (2002). Dissolution of cellulose with ionic liquids. Journal of the American Chemical Society,124, 4974–4975.CrossRefGoogle Scholar
  21. 21.
    Fort, D. A., Remsing, R. C., Swatloski, R. P., Moyna, P., Moyna, G., & Rogers, R. D. (2007). Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chemistry,9, 63–69.CrossRefGoogle Scholar
  22. 22.
    Vitz, J., Erdmenger, T., Haensch, C., & Schubert, U. S. (2009). Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chemistry,11, 417–424.CrossRefGoogle Scholar
  23. 23.
    Zhao, H., Baker, G. A., Song, Z., Olubajo, O., Crittle, T., & Peters, D. (2008). Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chemistry,10, 696–705.CrossRefGoogle Scholar
  24. 24.
    Khan, A. S., Nasrullah, A., Ullah, Z., Bhat, A. H., Ghanem, O. B., Muhammad, N., et al. (2018). Thermophysical properties and ecotoxicity of new nitrile functionalised protic ionic liquids. Journal of Molecular Liquids,249, 583–590.CrossRefGoogle Scholar
  25. 25.
    Zakzeski, J., Bruijnincx, P. C., Jongerius, A. L., & Weckhuysen, B. M. (2010). The catalytic valorization of lignin for the production of renewable chemicals. Chemical Reviews,110, 3552–3599.CrossRefGoogle Scholar
  26. 26.
    Lee, S. H., Doherty, T. V., Linhardt, R. J., & Dordick, J. S. (2009). Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnology and bioengineering,102, 1368–1376.CrossRefGoogle Scholar
  27. 27.
    Pu, Y., Jiang, N., & Ragauskas, A. J. (2007). Ionic liquid as a green solvent for lignin. Journal of Wood Chemistry and Technology,27, 23–33.CrossRefGoogle Scholar
  28. 28.
    Ji, W., Ding, Z., Liu, J., Song, Q., Xia, X., Gao, H., et al. (2012). Mechanism of lignin dissolution and regeneration in ionic liquid. Energy & Fuels,26, 6393–6403.CrossRefGoogle Scholar
  29. 29.
    Brandt, A., Ray, M. J., To, T. Q., Leak, D. J., Murphy, R. J., & Welton, T. (2011). Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chemistry,13, 2489–2499.CrossRefGoogle Scholar
  30. 30.
    Eminov, S., Filippousi, P., Brandt, A., Wilton-Ely, J. D., & Hallett, J. P. (2016). Direct catalytic conversion of cellulose to 5-hydroxymethylfurfural using ionic liquids. Inorganics,4, 32–47.CrossRefGoogle Scholar
  31. 31.
    Werpy, T., Petersen, G., Aden, A., Bozell, J., Holladay, J., White, J., et al. (2004). Top value added chemicals from biomass. Volume 1-Results of screening for potential candidates from sugars and synthesis gas. Washington DC: Department of Energy.Google Scholar
  32. 32.
    Tundo, P., Perosa, A., & Zecchini, F. (2007). Methods and reagents for green chemistry. Hoboken: Wiley.Google Scholar
  33. 33.
    Carole, T.M., Pellegrino, J., & Paster, M.D. (2004). Opportunities in the industrial biobased products industry. In Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003 (pp. 871–885) Breckenridge, CO: Springer.Google Scholar
  34. 34.
    Li, C., & Zhao, Z. K. (2007). Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Advanced Synthesis & Catalysis,349, 1847–1850.CrossRefGoogle Scholar
  35. 35.
    Zhao, H., Holladay, J. E., Brown, H., & Zhang, Z. C. (2007). Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science,316, 1597–1600.CrossRefGoogle Scholar
  36. 36.
    Muranaka, Y., Suzuki, T., Sawanishi, H., Hasegawa, I., & Mae, K. (2014). Effective production of levulinic acid from biomass through pretreatment using phosphoric acid, hydrochloric acid, or ionic liquid. Industrial & Engineering Chemistry Research,53, 11611–11621.CrossRefGoogle Scholar
  37. 37.
    Sievers, C., Musin, I., Marzialetti, T., Valenzuela Olarte, M.B., Agrawal, P.K., & Jones, C.W. (2009). Acid‐catalyzed conversion of sugars and furfurals in an ionic‐liquid phase. ChemSusChem: Chemistry & Sustainability Energy & Materials, 2, 665–671.Google Scholar
  38. 38.
    Chen, T., Xiong, C., & Tao, Y. (2018). Enhanced hydrolysis of cellulose in ionic liquid using mesoporous ZSM-5. Molecules,23, 529–539.CrossRefGoogle Scholar
  39. 39.
    Bose, S., Armstrong, D. W., & Petrich, J. W. (2010). Enzyme-catalyzed hydrolysis of cellulose in ionic liquids: A green approach toward the production of biofuels. The Journal of Physical Chemistry B,114, 8221–8227.CrossRefGoogle Scholar
  40. 40.
    de Oliveira, H. F. N., Fares, C., & Rinaldi, R. (2015). Beyond a solvent: the roles of 1-butyl-3-methylimidazolium chloride in the acid-catalysis for cellulose depolymerisation. Chemical Science,6, 5215–5224.CrossRefGoogle Scholar
  41. 41.
    Hu, L., Lin, L., Wu, Z., Zhou, S., & Liu, S. (2015). Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts. Applied Catalysis B: Environmental,174, 225–243.CrossRefGoogle Scholar
  42. 42.
    Qu, Y., Li, L., Wei, Q., Huang, C., Oleskowicz-Popiel, P., & Xu, J. (2016). One-pot conversion of disaccharide into 5-hydroxymethylfurfural catalyzed by imidazole ionic liquid. Scientific Reports,6, 26067.CrossRefGoogle Scholar
  43. 43.
    Mukherjee, A., Dumont, M.-J., & Raghavan, V. (2015). Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass and Bioenergy,72, 143–183.CrossRefGoogle Scholar
  44. 44.
    Wang, P., Yu, H., Zhan, S., & Wang, S. (2011). Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid. Bioresource Technology,102, 4179–4183.CrossRefGoogle Scholar
  45. 45.
    Tiong, Y. W., Yap, C. L., Gan, S., & Yap, W. S. P. (2018). Conversion of biomass and its derivatives to levulinic acid and levulinate esters via ionic liquids. Industrial & Engineering Chemistry Research,57, 4749–4766.CrossRefGoogle Scholar
  46. 46.
    Chatel, G., & Rogers, R. D. (2013). Oxidation of lignin using ionic liquids—an innovative strategy to produce renewable chemicals. ACS Sustainable Chemistry & Engineering,2, 322–339.CrossRefGoogle Scholar
  47. 47.
    Rinaldi, R., Jastrzebski, R., Clough, M. T., Ralph, J., Kennema, M., Bruijnincx, P. C., et al. (2016). Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angewandte Chemie International Edition,55, 8164–8215.CrossRefGoogle Scholar
  48. 48.
    Mainka, H., Tager, O., Korner, E., Hilfert, L., Busse, S., Edelmann, F. T., et al. (2015). Lignin–an alternative precursor for sustainable and cost-effective automotive carbon fiber. Journal of Materials Research and Technology,4, 283–296.CrossRefGoogle Scholar
  49. 49.
    Kadla, J. F., & Kubo, S. (2004). Lignin-based polymer blends: analysis of intermolecular interactions in lignin–synthetic polymer blends. Composites Part A: Applied Science and Manufacturing,35, 395–400.CrossRefGoogle Scholar
  50. 50.
    Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S., et al. (2006). Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. Journal of Biotechnology,125, 198–209.CrossRefGoogle Scholar
  51. 51.
    Holladay, J.E., Bozell, J.J., White, J.F., Johnson, D. (2007). Top value added chemicals from biomass: results of screening for potential candidate from sugars and synthesis gas, vol. 2. Pacific Northwest National Laboratory: US Department of Energy.Google Scholar
  52. 52.
    Ma, R., Xu, Y., & Zhang, X. (2015). Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. Chemsuschem,8, 24–51.CrossRefGoogle Scholar
  53. 53.
    Yan, N., Yuan, Y., Dykeman, R., Kou, Y., & Dyson, P. J. (2010). Hydrodeoxygenation of lignin-derived phenols into alkanes by using nanoparticle catalysts combined with bronsted acidic ionic liquids. Angewandte Chemie,122, 5681–5685.CrossRefGoogle Scholar
  54. 54.
    Liu, S., Shi, Z., Li, L., Yu, S., Xie, C., & Song, Z. (2013). Process of lignin oxidation in an ionic liquid coupled with separation. RSC Advances,3, 5789–5793.CrossRefGoogle Scholar
  55. 55.
    Prado, R., Brandt, A., Erdocia, X., Hallet, J., Welton, T., & Labidi, J. (2016). Lignin oxidation and depolymerisation in ionic liquids. Green Chemistry,18, 834–841.CrossRefGoogle Scholar
  56. 56.
    Scott, M., Deuss, P. J., de Vries, J. G., Prechtl, M. H., & Barta, K. (2016). New insights into the catalytic cleavage of the lignin β-O-4 linkage in multifunctional ionic liquid media. Catalysis Science & Technology,6, 1882–1891.CrossRefGoogle Scholar
  57. 57.
    Wiermans, L., Schumacher, H., Klaaßen, C.-M., & de Maria, P. D. (2015). Unprecedented catalyst-free lignin dearomatization with hydrogen peroxide and dimethyl carbonate. RSC Advances,5, 4009–4018.CrossRefGoogle Scholar
  58. 58.
    Prado, R., Erdocia, X., De Gregorio, G. F., Labidi, J., & Welton, T. (2016). Willow lignin oxidation and depolymerization under low cost ionic liquid. ACS Sustainable Chemistry & Engineering,4, 5277–5288.CrossRefGoogle Scholar
  59. 59.
    Zakzeski, J., Jongerius, A. L., & Weckhuysen, B. M. (2010). Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids. Green Chemistry,12, 1225–1236.CrossRefGoogle Scholar
  60. 60.
    Das, L., Xu, S., & Shi, J. (2017). Catalytic oxidation and depolymerization of Lignin in Aqueous Ionic Liquid. Frontiers in Energy Research,5, 21.CrossRefGoogle Scholar
  61. 61.
    Stark, K., Taccardi, N., Bosmann, A., & Wasserscheid, P. (2010). Oxidative depolymerization of lignin in ionic liquids. Chemsuschem,3, 719–723.CrossRefGoogle Scholar
  62. 62.
    Liu, F., Liu, Q., Wang, A., & Zhang, T. (2016). Direct catalytic hydrogenolysis of kraft lignin to phenols in choline-derived ionic liquids. ACS Sustainable Chemistry & Engineering,4, 3850–3856.CrossRefGoogle Scholar
  63. 63.
    Lange, H., Decina, S., & Crestini, C. (2013). Oxidative upgrade of lignin–recent routes reviewed. European Polymer Journal,49, 1151–1173.CrossRefGoogle Scholar
  64. 64.
    Dier, T. K., Rauber, D., Durneata, D., Hempelmann, R., & Volmer, D. A. (2017). Sustainable electrochemical depolymerization of lignin in reusable ionic liquids. Scientific Reports,7, 5041.CrossRefGoogle Scholar
  65. 65.
    Reichert, E., Wintringer, R., Volmer, D. A., & Hempelmann, R. (2012). Electro-catalytic oxidative cleavage of lignin in a protic ionic liquid. Physical Chemistry Chemical Physics,14, 5214–5221.CrossRefGoogle Scholar
  66. 66.
    Cox, B. J., & Ekerdt, J. G. (2012). Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst. Bioresource Technology,118, 584–588.CrossRefGoogle Scholar
  67. 67.
    Thierry, M., Majira, A., Pegot, B., Cezard, L., Bourdreux, F., Clement, G., et al. (2018). Imidazolium-based Ionic Liquids as efficient reagents for the C−O bond cleavage of Lignin. Chemsuschem,11, 439–448.CrossRefGoogle Scholar
  68. 68.
    Diop, A., Jradi, K., Daneault, C., & Montplaisir, D. (2015). Kraft lignin depolymerization in an ionic liquid without a catalyst. BioResources,10, 4933–4946.CrossRefGoogle Scholar
  69. 69.
    Liu, C., Li, Y. M., & Hou, Y. (2018). Preparation and structural characterization of lignin micro/nano-particles with ionic liquid treatment by self-assembly. Express Polymer Letters,12, 946–956.CrossRefGoogle Scholar
  70. 70.
    Szalaty, T. J., Klapiszewski, L., Kurc, B., Skrzypczak, A., & Jesionowski, T. (2018). A comparison of protic and aprotic ionic liquids as effective activating agents of kraft lignin. Developing functional MnO2/lignin hybrid materials. Journal of Molecular Liquids,261, 456–467.CrossRefGoogle Scholar
  71. 71.
    Dutta, T., Sun, J., Simmons, B.A., & Singh, S. (2017). Conversion of lignin to ionic liquids.Google Scholar
  72. 72.
    Socha, A., Singh, S., Simmons, B.A., & Bergeron, M. (2014). Synthesis of novel ionic liquids from lignin-derived compounds.Google Scholar
  73. 73.
    Varanasi, P., Singh, P., Auer, M., Adams, P. D., Simmons, B. A., & Singh, S. (2013). Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment. Biotechnology for Biofuels,6, 14.CrossRefGoogle Scholar
  74. 74.
    Socha, A. M., Parthasarathi, R., Shi, J., Pattathil, S., Whyte, D., Bergeron, M., et al. (2014). Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. Proceedings of the National Academy of Sciences,111, E3587–E3595.CrossRefGoogle Scholar
  75. 75.
    Jiang, N., Pu, Y., Samuel, R., & Ragauskas, A. J. (2009). Perdeuterated pyridinium molten salt (ionic liquid) for direct dissolution and NMR analysis of plant cell walls. Green Chemistry,11, 1762–1766.CrossRefGoogle Scholar
  76. 76.
    Yelle, D. J., Ralph, J., & Frihart, C. R. (2008). Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy. Magnetic Resonance in Chemistry,46, 508–517.CrossRefGoogle Scholar
  77. 77.
    Cheng, K., Sorek, H., Zimmermann, H., Wemmer, D. E., & Pauly, M. (2013). Solution-state 2D NMR spectroscopy of plant cell walls enabled by a dimethylsulfoxide-d 6/1-ethyl-3-methylimidazolium acetate solvent. Analytical Chemistry,85, 3213–3221.CrossRefGoogle Scholar
  78. 78.
    Zoia, L., King, A. W., & Argyropoulos, D. S. (2011). Molecular weight distributions and linkages in lignocellulosic materials derivatized from ionic liquid media. Journal of Agricultural and Food Chemistry,59, 829–838.CrossRefGoogle Scholar
  79. 79.
    Engel, P., Hein, L., & Spiess, A. C. (2012). Derivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis. Biotechnology for Biofuels,5, 77.CrossRefGoogle Scholar
  80. 80.
    Cadoche, L., & Lopez, G. D. (1989). Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biological Wastes,30, 153–157.CrossRefGoogle Scholar
  81. 81.
    Miao, Z., Grift, T. E., Hansen, A. C., & Ting, K. C. (2011). Energy requirement for comminution of biomass in relation to particle physical properties. Industrial Crops and Products,33, 504–513.CrossRefGoogle Scholar
  82. 82.
    Sokhansanj, S., Kumar, A., & Turhollow, A. F. (2006). Development and implementation of integrated biomass supply analysis and logistics model (IBSAL). Biomass and Bioenergy,30, 838–847.CrossRefGoogle Scholar
  83. 83.
    Brandt, A., Erickson, J. K., Hallett, J. P., Murphy, R. J., Potthast, A., Ray, M. J., et al. (2012). Soaking of pine wood chips with ionic liquids for reduced energy input during grinding. Green Chemistry,14, 1079–1085.CrossRefGoogle Scholar
  84. 84.
    King, A. W., Parviainen, A., Karhunen, P., Matikainen, J., Hauru, L. K., Sixta, H., et al. (2012). Relative and inherent reactivities of imidazolium-based ionic liquids: the implications for lignocellulose processing applications. RSC Advances,2, 8020–8026.CrossRefGoogle Scholar
  85. 85.
    Mazza, M., Catana, D.-A., Vaca-Garcia, C., & Cecutti, C. (2009). Influence of water on the dissolution of cellulose in selected ionic liquids. Cellulose,16, 207–215.CrossRefGoogle Scholar
  86. 86.
    Sun, N., Liu, H., Sathitsuksanoh, N., Stavila, V., Sawant, M., Bonito, A., et al. (2013). Production and extraction of sugars from switchgrass hydrolyzed in ionic liquids. Biotechnology for Biofuels,6, 39.CrossRefGoogle Scholar
  87. 87.
    da Costa Lopes, A. M., & Lukasik, R. M. (2018). Separation and Recovery of a Hemicellulose-Derived Sugar Produced from the Hydrolysis of Biomass by an Acidic Ionic Liquid. Chemsuschem,11, 1099–1107.CrossRefGoogle Scholar
  88. 88.
    Amde, M., Liu, J.-F., & Pang, L. (2015). Environmental application, fate, effects, and concerns of ionic liquids: a review. Environmental Science & Technology,49, 12611–12627.CrossRefGoogle Scholar
  89. 89.
    Reid, J. E., Prydderch, H., Spulak, M., Shimizu, S., Walker, A. J., & Gathergood, N. (2018). Green profiling of aprotic versus protic ionic liquids: Synthesis and microbial toxicity of analogous structures. Sustainable Chemistry and Pharmacy,7, 17–26.CrossRefGoogle Scholar
  90. 90.
    Egorova, K. S., & Ananikov, V. P. (2014). Toxicity of ionic liquids: Eco (cyto) activity as complicated, but unavoidable parameter for task-specific optimization. Chemsuschem,7, 336–360.CrossRefGoogle Scholar
  91. 91.
    Petkovic, M., Seddon, K. R., Rebelo, L. P. N., & Pereira, C. S. (2011). Ionic liquids: A pathway to environmental acceptability. Chemical Society Reviews,40, 1383–1403.CrossRefGoogle Scholar
  92. 92.
    Pham, T. P. T., Cho, C.-W., & Yun, Y.-S. (2010). Environmental fate and toxicity of ionic liquids: A review. Water Research,44, 352–372.CrossRefGoogle Scholar
  93. 93.
    Oliveira, M.V., Vidal, B.T., Melo, C.M., de Miranda, R.D.C., Soares, C.M., Coutinho, J., et al. (2016). (Eco) toxicity and biodegradability of protic ionic liquids. Chemosphere, 147, 460–466.CrossRefGoogle Scholar
  94. 94.
    Grzonkowska, M., Sosnowska, A., Barycki, M., Rybinska, A., & Puzyn, T. (2016). How the structure of ionic liquid affects its toxicity to Vibrio fischeri? Chemosphere,159, 199–207.CrossRefGoogle Scholar
  95. 95.
    Biczak, R., Pawlowska, B., Balczewski, P., & Rychter, P. (2014). The role of the anion in the toxicity of imidazolium ionic liquids. Journal of Hazardous Materials,274, 181–190.CrossRefGoogle Scholar
  96. 96.
    Peric, B., Sierra, J., Marti, E., Cruanas, R., Garau, M. A., Arning, J., et al. (2013). (Eco) toxicity and biodegradability of selected protic and aprotic ionic liquids. Journal of Hazardous Materials,261, 99–105.CrossRefGoogle Scholar
  97. 97.
    Wiredu, B., & Amarasekara, A. S. (2014). Synthesis of a silica-immobilized Bronsted acidic ionic liquid catalyst and hydrolysis of cellulose in water under mild conditions. Catalysis Communications,48, 41–44.CrossRefGoogle Scholar
  98. 98.
    Klein-Marcuschamer, D., Simmons, B. A., & Blanch, H. W. (2011). Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels, Bioproducts and Biorefining, 5, 562–569.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of ChemistryUniversity of the PunjabLahorePakistan

Personalised recommendations