Advertisement

Water Hyacinth for Biocomposites—An Overview

  • A. Ajithram
  • J. T. Winowlin Jappes
  • Thiagamani Senthil Muthu KumarEmail author
  • Nagarajan Rajini
  • Anumakonda Varada Rajulu
  • Sanjay Mavinkere Rangappa
  • Suchart Siengchin
Chapter
  • 22 Downloads

Abstract

In recent years, there is a mounting interest in the utilization of natural fibers in composite materials due to their abundancy, low density and weight, low cost, recyclability and biodegradable properties. It is well known that these plant fibers are rich in cellulose and have the greater potential as reinforcements in polymeric materials to form polymer composites. Natural fibers were already proved as a better alternative for high cost synthetic fibers such as glass, carbon, kevlar and basalt etc. This article presents an overview on the environmental impact of aquatic weed water hyacinth (Eichhornea crassipe). Furthermore, emphasis is given on the extraction of fibers from water hyacinth, fabrication of composites and the effective utilization of the extracted natural fiber in composite materials for various applications.

References

  1. 1.
    Herrera-Franco, P. J., & Valadez-Gonzalez, A. (2005). A study of the mechanical properties of short natural—fiber reinforced composites. Composites Part B: Engineering, 36(8), 597–608.CrossRefGoogle Scholar
  2. 2.
    Tan, S.J., Supri, A.J., & Chong, K.M. (2007). Properties of recycled high-density polyethylene/water hyacinth fiber composites: the effect of different concentration of compatibilizer. Polymer Bulletin, 1387–1393.Google Scholar
  3. 3.
    Bhattacharya, A., & Kumar, P. (2010). Water hyacinth as a potential biofuel crop. Electronic journal of Environmental, Agricultural and Food Chemistry, 9(1), 112–122.Google Scholar
  4. 4.
    Hairul, A., Hendri, P., Sapuan, S.M., & Ishak, M.R. (2013). Effect of alkalization on mechanical properties of water hyacinth fibers-unsaturated polyester composites, Polymer-Plastics Technology and Engineering, 52, 446–451.Google Scholar
  5. 5.
    Malik, A. (2007). Environmental challenge vis a vis opportunity: The case of water hyacinth. Environment International, 33(1), 122–138.CrossRefGoogle Scholar
  6. 6.
    Mansour, O., Abdel-Hady, B., Ibrahem, S.K., & Goda, M. (2011). Polymer Plastic Tech Engineering, 40, 311.Google Scholar
  7. 7.
    Flores Ramirez, N., Sanchez Hernandez, Y., Cruz de Leon, J., Vasquez Garcia, S. R., Domratcheva, L., & Garcia Gonzalez, L. (2015). Composites from water hyacinth and polyester resin. Fibers and Polymers, 16(1), 196–200.CrossRefGoogle Scholar
  8. 8.
    Abral, H., Kadriadi, D., Rodianus, A., Mastariyanto, P., Ilhamdi, Arief, S., Sapuan, SM., & Ihak, R. (2014). Mechanical properties of water hyacinth fibers—polyester composites before and after immersion in water. Materials and Design, 58, 125–129Google Scholar
  9. 9.
    Supri, A. G., Tan, S. J., Ismail, H., & Teh, P. L. (2013). Enhancing Interfacial Adhesion performance by using Poly (vinyl alcohol) in (low-density polyethylene)/(natural rubber)/(water hyacinth fiber) composites. Journal of Vinyl & Additive Technology, 19, 47–54.CrossRefGoogle Scholar
  10. 10.
    Phenology, T. H. E., Hyacinth, W., Lake, F., & Spencer, N. R. (1981). Aquatic Botany, 10(1–32), 10.Google Scholar
  11. 11.
    Kgser, H.J.K., & Schmalstieg, G. (1982). Densification of water hyacinth basic data, 61, 791–798.Google Scholar
  12. 12.
    Solms, M. (2018). the resource utilization of water hyacinth. Journal of Environmental Management, 87.Google Scholar
  13. 13.
    Tumolva, T., Ortenero, J., Kubouchi, M., & City. (2019). Characterization and treatment of water. International Journal of Engineering and Technology, 8(1.9), 1–11.Google Scholar
  14. 14.
    Sahari, J., Sapuan, S. M., Zainudin, E. S., & Maleque, M. A. (2013). Mechanical and thermal properties of environmentally friendly composites derived from sugar palm tree. Materials and Design, 49, 285–289.CrossRefGoogle Scholar
  15. 15.
    Singha, A.S., & Thakur, V.K. (2014). Physical, Chemical and Mechanical Properties of Hibiscus sabdariffa Fiber/Polymer Composite. International Journal of Polymeric Materials and Polymeric Biomaterials, 37–41.Google Scholar
  16. 16.
    Sundari, M. T., & Ramesh, A. (2012). Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth—Eichhornia crassipes. Carbohydrate Polymers, 87(2), 1701–1705.CrossRefGoogle Scholar
  17. 17.
    Ghani, S.A., & Lim, B.Y. (2009). Effect of treated and untreated filler loading on the mechanical, morphological, and water absorption properties of water hyacinth fibers-low density polyethylene composites. Journal of Physical Science, 20(2), 85–96Google Scholar
  18. 18.
    Supri, A.G., Tan, S.J., & Teh, P.L. (2011). Effect of poly (methyl Methacrylate) modified water hyacinth fiber on properties of low density Polyethylene/Natural Rubber/Water Hyacinth Fiber Composites. Polymer Plastics Technology and Engineering, 2559(2016).Google Scholar
  19. 19.
    Reddy, K.R., & Sutton, D.L. (1984). Reviews and analyses Waterhyacinths for Water Quality Improvement. Journal of Environmental Quality, 13(4868).Google Scholar
  20. 20.
    Singhal, V., & Rai, J. P. N. (2003). Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents. Biosource Technology, 86, 221–225.CrossRefGoogle Scholar
  21. 21.
    Verma, V. K., Singh, Y. P., & Rai, J. P. N. (2007). Biogas production from plant biomass used for phytoremediation of industrial wastes. Biosource Technology, 98, 1664–1669.CrossRefGoogle Scholar
  22. 22.
    Bernard, P., Lhote, A., & Legube, B. (2019). Principal component analysis : an appropriate tool for water quality evaluation and management—application to a tropical lake system. Ecological Modelling, 178, 295–311Google Scholar
  23. 23.
    Harish, S., Michael, D. P., Bensely, A., Lal, D. M., & Rajadurai, A. (2008). Mechanical property evaluation of natural fiber coir composite. Materials Characterization, 60(1), 44–49.CrossRefGoogle Scholar
  24. 24.
    Asrofi, M., Abral, H., Kasim, A., Pratoto, A., Mahardika, M., & Hafizulhaq, F. (2018). Mechanical properties of a water hyacinth nanofiber cellulose reinforced thermoplastic starch bionanocomposite: Effect of ultrasonic vibration during processing. Fibers, 6(2), 1–9.CrossRefGoogle Scholar
  25. 25.
    Abral, H., Lawrensius, V., Handayani, D., & Sugiarti, E. (2018). Preparation of nano-sized particles from bacterial cellulose using ultrasonication and their characterization. Carbohydrate Polymers, 191(September 2017), 161–167.Google Scholar
  26. 26.
    Bledzki, A. K., Reihmane, S., & Gassan, J. (1998). Thermoplastics reinforced with wood fillers: A literature review. Polymer—Plastics Technology and Engineering, 37(4), 451–468.CrossRefGoogle Scholar
  27. 27.
    Kalia, S., Dufresne, A., Cherian, B.M., Kaith, B.S., Avérous, L., Njuguna, J., & Nassiopoulos, E. (2011). Cellulose-based bio- and nanocomposites: A review. International Journal of Polymer Science, 2011.Google Scholar
  28. 28.
    Moorhead, K. K., Reddy, K. R., & Graetz, D. A. (1988). Water hyacinth productivity and detritus accumulation. Hydrobiologia, 157(2), 179–185.CrossRefGoogle Scholar
  29. 29.
    Patel, V., Desai, M., & Madamwar, D. (1993). Thermochemical pretreatment of water hyacinth for improved biomethanation. Applied Biochemistry and Biotechnology, 42(1), 67–74.CrossRefGoogle Scholar
  30. 30.
    Jarukumjorn, K., & Suppakarn, N. (2009). Effect of glass fiber hybridization on properties of sisal fiber-polypropylene composites. Composites Part B: Engineering, 40(7), 623–627.CrossRefGoogle Scholar
  31. 31.
    Reed, K. E. (1980). Dynamic mechanical analysis of fiber reinforced composites. Polymer Composites, 1(1), 44–49.CrossRefGoogle Scholar
  32. 32.
    Taylor, P., Van Wyk, E., & Van Wilgen, B.W. (2002). The cost of water hyacinth control in South Africa. African Journal of Aqatic Science, 37–41.Google Scholar
  33. 33.
    Sanjay, M.R., Arpitha, G.R., Naik, L.L., Gopalakrishna, K., & Yogesha, B. (2016). Applications of natural fibers and its composites : An overview. Natural Resources, 108–114.Google Scholar
  34. 34.
    Sanjay, M.R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., & Pradeep, S. (2018). Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 172.Google Scholar
  35. 35.
    Zhou, W., Zhu, D., Tan, L., Liao, S., Hu, Z., & Hamilton, D. (2007). Extraction and retrieval of potassium from water hyacinth (Eichhornia crassipes). Bioresource Technology, 98(1), 226–231.CrossRefGoogle Scholar
  36. 36.
    Abral, H., Kadriadi, D., Rodianus, A., Mastariyanto, P., Arief, S., Sapuan, S. M., et al. (2014). Mechanical properties of water hyacinth fibers—polyester composites before and after immersion in water. Materials and Design, 58, 125–129.CrossRefGoogle Scholar
  37. 37.
    Adhikary, K. B., Pang, S., & Staiger, M. P. (2008). Dimensional stability and mechanical behaviour of wood—plastic composites based on recycled and virgin high-density polyethylene (HDPE). Composite Part B: Engineering, 39, 807–815.CrossRefGoogle Scholar
  38. 38.
    Goswami, T., & Saikia, C. N. (1995). Water hyacinth—a potential source of raw material for greaseproof paper. 50(1994), 235–238.Google Scholar
  39. 39.
    Temi, T., & Michael, H. Jr. (2007). Adsorption of methyl red by water-hyacinth (Eichornia crassipes). Biomass Chemistry and Biodiversity, 4.Google Scholar
  40. 40.
    Mishima, D. (2008). Ethanol production from candidate energy crops: Water hyacinth (Eichhornia crassipes) and water lettuce. Bio resource Technology, 99, 2495–2500.CrossRefGoogle Scholar
  41. 41.
    Rezania, S., Fadhil, M., & Fatimah, S. (2016). Evaluation of water hyacinth (Eichornia crassipes) as a potential raw material source for briquette production. Energy, 111, 768–773.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • A. Ajithram
    • 1
  • J. T. Winowlin Jappes
    • 1
  • Thiagamani Senthil Muthu Kumar
    • 1
    • 3
    Email author
  • Nagarajan Rajini
    • 2
  • Anumakonda Varada Rajulu
    • 2
  • Sanjay Mavinkere Rangappa
    • 3
  • Suchart Siengchin
    • 3
  1. 1.Department of Mechanical EngineeringKalasalingam Academy of Research and EducationKrishnankoilIndia
  2. 2.Centre for Composite Materials, Department of Mechanical EngineeringKalasalingam Academy of Research and EducationKrishnankoilIndia
  3. 3.Department of Mechanical and Process EngineeringThe Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North BangkokBangkokThailand

Personalised recommendations