Advertisement

Bionanocomposites from Biofibers and Biopolymers

  • Muhammad BilalEmail author
  • Tahir Rasheed
  • Faran Nabeel
  • Hafiz M. N. IqbalEmail author
Chapter
  • 27 Downloads

Abstract

This particular chapter focuses on bionanocomposites, an emergent group of bio-hybrid materials at nanostructured level, as a concept of environmental, bioinspired, and functional hybrid materials. Bionanocomposites represents at least their one dimension on a nanometer scale and can be engineered using naturally occurring biofibers and/or biopolymers either in pristine form or the combination of both along with other inorganic elements. Nanoscale cues/constructs have now become a high requisite for new applications. Likewise, synthetic polymer-based nanocomposites, bionanocomposites (based on biofibers or biopolymers) also exhibit inherited or improved structural and multifunctional characteristics, such as renewability, recyclability, biocompatibility, biodegradability, (re)-generatability, high and efficient functionality against various substrates, induced turn-over, and overall cost-effectiveness are of high interest for numerous applications. Individually or collectively, all those properties of bionanocomposites open new and interesting perspectives with notable incidences in the environmental, biomedical, and biotechnological sector of the contemporary world. In this context, research is underway, around the globe, on the positioning of bionanocomposites as a new interdisciplinary area that could cover significant topics such as bioinspired biomaterials, green composites, bio-nanofabrication strategies and/or engineering processes, and biomimetic systems. Briefly, this chapter discusses various perspectives related to the biofibers and biopolymers, such as cellulose, chitosan, and polyhydroxyalkanoates, as building blocks of bionanocomposites, their sources, and classification along with the development of bionanocomposites using those fibers and polymers. Further to this end, the applied standpoints in relation to environmental and biomedical applications of bionanocomposites are also given with suitable examples.

Notes

Acknowledegment

All listed authors are grateful to their representative universities/institutes for providing the literature facilities.

Conflict of Interest

Authors declare no conflict of interest in any capacity including competition or financial.

References

  1. 1.
    Essabir, H., Raji, M., Laaziz, S. A., Rodrique, D., Bouhfid, R., & el kacem Qaiss, A. (2018). Thermo-mechanical performances of polypropylene biocomposites based on untreated, treated and compatibilized spent coffee grounds. Composites Part B: Engineering149, 1–11.Google Scholar
  2. 2.
    Lau, K. T., Hung, P. Y., Zhu, M. H., & Hui, D. (2018). Properties of natural fiber composites for structural engineering applications. Composites Part B: Engineering, 136, 222–233.CrossRefGoogle Scholar
  3. 3.
    Rhim, J. W., Park, H. M., & Ha, C. S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10–11), 1629–1652.CrossRefGoogle Scholar
  4. 4.
    Nafchi, A. M., Alias, A. K., Mahmud, S., & Robal, M. (2012). Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. Journal of Food Engineering, 113(4), 511–519.CrossRefGoogle Scholar
  5. 5.
    Hassanzadeh-Aghdam, M. K., Ansari, R., Mahmoodi, M. J., & Darvizeh, A. (2018). Effect of nanoparticle aggregation on the creep behavior of polymer nanocomposites. Composites Science and Technology, 162, 93–100.CrossRefGoogle Scholar
  6. 6.
    Mohanty, A. K., Misra, M. A., & Hinrichsen, G. I. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 276(1), 1–24.CrossRefGoogle Scholar
  7. 7.
    Wei, L., & McDonald, A. (2016). A review on grafting of biofibers for biocomposites. Materials, 9(4), 303.CrossRefGoogle Scholar
  8. 8.
    Kargarzadeh, H., Mariano, M., Huang, J., Lin, N., Ahmad, I., Dufresne, A., et al. (2017). Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer, 132, 368–393.CrossRefGoogle Scholar
  9. 9.
    Dufresne, A., Thomas, S., & Pothan, L. A. (2013). Bionanocomposites: State of the art, challenges, and opportunities. In Biopolymer nanocomposites: Processing, properties, and applications (pp. 1–10).Google Scholar
  10. 10.
    John, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 71(3), 343–364.CrossRefGoogle Scholar
  11. 11.
    Kadla, J. F., & Gilbert, R. D. (2000). Cellulose structure: A review. Cellulose Chemistry and Technology, 34(3–4), 197–216.Google Scholar
  12. 12.
    Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44(22), 3358–3393.CrossRefGoogle Scholar
  13. 13.
    Roy, D., Semsarilar, M., Guthrie, J. T., & Perrier, S. (2009). Cellulose modification by polymer grafting: A review. Chemical Society Reviews, 38(7), 2046–2064.CrossRefGoogle Scholar
  14. 14.
    Pearce, E. M. (1985). Handbook of fiber science and technology: Fiber chemistry (Vol. 4). Marcel Dekker Incorporated.Google Scholar
  15. 15.
    Pilla, S. (2011). Handbook of bioplastics and biocomposites engineering applications (Vol. 81). John Wiley & Sons.Google Scholar
  16. 16.
    Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews, 110(6), 3479–3500.CrossRefGoogle Scholar
  17. 17.
    Šturcová, A., Davies, G. R., & Eichhorn, S. J. (2005). Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules, 6(2), 1055–1061.CrossRefGoogle Scholar
  18. 18.
    Li, M. C., Wu, Q., Song, K., Lee, S., Qing, Y., & Wu, Y. (2015). Cellulose nanoparticles: Structure–morphology–rheology relationships. ACS Sustainable Chemistry & Engineering, 3(5), 821–832.CrossRefGoogle Scholar
  19. 19.
    Agarwal, U. P., Sabo, R., Reiner, R. S., Clemons, C. M., & Rudie, A. W. (2012). Spatially resolved characterization of cellulose nanocrystal–polypropylene composite by confocal Raman microscopy. Applied Spectroscopy, 66(7), 750–756.CrossRefGoogle Scholar
  20. 20.
    Chen, L., Wang, Q., Hirth, K., Baez, C., Agarwal, U. P., & Zhu, J. Y. (2015). Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose, 22(3), 1753–1762.CrossRefGoogle Scholar
  21. 21.
    Abe, K., Iwamoto, S., & Yano, H. (2007). Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules, 8(10), 3276–3278.CrossRefGoogle Scholar
  22. 22.
    Xu, X., Liu, F., Jiang, L., Zhu, J. Y., Haagenson, D., & Wiesenborn, D. P. (2013). Cellulose nanocrystals vs. cellulose nanofibrils: A comparative study on their microstructures and effects as polymer reinforcing agents. ACS Applied Materials & Interfaces5(8), 2999–3009.Google Scholar
  23. 23.
    Saito, T., Kimura, S., Nishiyama, Y., & Isogai, A. (2007). Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules, 8(8), 2485–2491.CrossRefGoogle Scholar
  24. 24.
    Iqbal, H. M. N., Kyazze, G., & Keshavarz, T. (2013). Advances in the valorization of lignocellulosic materials by biotechnology: An overview. BioResources, 8(2), 3157–3176.CrossRefGoogle Scholar
  25. 25.
    Brodin, I. (2009). Chemical properties and thermal behaviour of kraft lignins. Doctoral dissertation, KTH, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden.Google Scholar
  26. 26.
    Chung, Y. L., Olsson, J. V., Li, R. J., Frank, C. W., Waymouth, R. M., Billington, S. L., et al. (2013). A renewable lignin–lactide copolymer and application in bio-based composites. ACS Sustainable Chemistry & Engineering, 1(10), 1231–1238.CrossRefGoogle Scholar
  27. 27.
    Pohjanlehto, H., Setälä, H. M., Kiely, D. E., & McDonald, A. G. (2014). Lignin-xylaric acid-polyurethane-based polymer network systems: Preparation and characterization. Journal of Applied Polymer Science, 131(1), 39714.CrossRefGoogle Scholar
  28. 28.
    Liu, R., Peng, Y., Cao, J., & Chen, Y. (2014). Comparison on properties of lignocellulosic flour/polymer composites by using wood, cellulose, and lignin flours as fillers. Composites Science and Technology, 103, 1–7.CrossRefGoogle Scholar
  29. 29.
    Thakur, V. K., Singha, A. S., & Thakur, M. K. (2014). Pressure induced synthesis of EA grafted Saccaharum cilliare fibers. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(1), 17–22.CrossRefGoogle Scholar
  30. 30.
    Arslan, H., Hazer, B., & Yoon, S. C. (2007). Grafting of poly (3-hydroxyalkanoate) and linoleic acid onto chitosan. Journal of Applied Polymer Science, 103(1), 81–89.CrossRefGoogle Scholar
  31. 31.
    Kikkawa, Y., Fukuda, M., Kimura, T., Kashiwada, A., Matsuda, K., Kanesato, M., … Tanaka, T. (2014). Atomic force microscopic study of chitinase binding onto chitin and cellulose surfaces. Biomacromolecules, 15(3), 1074-1077.CrossRefGoogle Scholar
  32. 32.
    Ifuku, S., & Saimoto, H. (2012). Chitin nanofibers: Preparations, modifications, and applications. Nanoscale, 4(11), 3308–3318.CrossRefGoogle Scholar
  33. 33.
    Ponnamma, D., Sadasivuni, K. K., Grohens, Y., Guo, Q., & Thomas, S. (2014). Carbon nanotube based elastomer composites–an approach towards multifunctional materials. Journal of Materials Chemistry C, 2(40), 8446–8485.CrossRefGoogle Scholar
  34. 34.
    Camargo, P. H. C., Satyanarayana, K. G., & Wypych, F. (2009). Nanocomposites: Synthesis, structure, properties and new application opportunities. Materials Research, 12(1), 1–39.CrossRefGoogle Scholar
  35. 35.
    Byeon, J. H., & Kim, Y. W. (2013). Continuous gas-phase synthesis of graphene nanoflakes hybridized by gold nanocrystals for efficient water purification and gene transfection. Chemical Engineering Journal, 229, 540–546.CrossRefGoogle Scholar
  36. 36.
    Sun, X. F., Qin, J., Xia, P. F., Guo, B. B., Yang, C. M., Song, C., et al. (2015). Graphene oxide–silver nanoparticle membrane for biofouling control and water purification. Chemical Engineering Journal, 281, 53–59.CrossRefGoogle Scholar
  37. 37.
    Bedian, L., Villalba-Rodriguez, A. M., Hernandez-Vargas, G., Parra-Saldivar, R., & Iqbal, H. M. (2017). Bio-based materials with novel characteristics for tissue engineering applications–A review. International Journal of Biological Macromolecules, 98, 837–846.CrossRefGoogle Scholar
  38. 38.
    Kolbasov, A., Sinha-Ray, S., Yarin, A. L., & Pourdeyhimi, B. (2017). Heavy metal adsorption on solution-blown biopolymer nanofiber membranes. Journal of Membrane Science, 530, 250–263.CrossRefGoogle Scholar
  39. 39.
    Iqbal, H. M. N. (2015). Development of bio-composites with novel characteristics through enzymatic grafting. Doctoral dissertation, University of Westminster.Google Scholar
  40. 40.
    Iqbal, H. M., Kyazze, G., Locke, I. C., Tron, T., & Keshavarz, T. (2015). Poly (3-hydroxybutyrate)-ethyl cellulose based bio-composites with novel characteristics for infection free wound healing application. International Journal of Biological Macromolecules, 81, 552–559.CrossRefGoogle Scholar
  41. 41.
    Bilal, M., Rasheed, T., Iqbal, H. M., Li, C., Hu, H., & Zhang, X. (2017). Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities. International Journal of Biological Macromolecules, 105, 393–400.CrossRefGoogle Scholar
  42. 42.
    Bilal, M., Zhao, Y., Rasheed, T., Ahmed, I., Hassan, S. T., Nawaz, M. Z., et al. (2019). Biogenic nanoparticle-chitosan conjugates with antimicrobial, antibiofilm, and anticancer potentialities: Development and characterization. International Journal of Environmental Research and Public Health, 16(4), 598.CrossRefGoogle Scholar
  43. 43.
    Iqbal, H. M., Kyazze, G., Locke, I. C., Tron, T., & Keshavarz, T. (2015). In situ development of self-defensive antibacterial biomaterials: Phenol-g-keratin-EC based bio-composites with characteristics for biomedical applications. Green Chemistry, 17(7), 3858–3869.CrossRefGoogle Scholar
  44. 44.
    Gallegos, A. M. A., Carrera, S. H., Parra, R., Keshavarz, T., & Iqbal, H. M. (2016). Bacterial cellulose: A sustainable source to develop value-added products–A review. BioResources, 11(2), 5641–5655.CrossRefGoogle Scholar
  45. 45.
    Villalba-Rodriguez, A. M., Parra-Saldivar, R., Ahmed, I., Karthik, K., Malik, Y. S., Dhama, K., et al. (2017). Bio-inspired biomaterials and their drug delivery perspectives-A review. Current Drug Metabolism, 18(10), 893–904.Google Scholar
  46. 46.
    Bilal, M., & Iqbal, H. M. (2018). Bio-based biopolymers and their potential applications for bio-and non-bio sectors. In Handbook of biopolymers: Advances and multifaceted applications (p. 23).Google Scholar
  47. 47.
    Bilal, M., Rasheed, T., Ullah, A., & Iqbal, H. M. (2018). Valorization of green and sustainable advanced materials from a biomed perspective-potential applications. Green and Sustainable Advanced Materials: Applications, 2, 19–47.CrossRefGoogle Scholar
  48. 48.
    Iqbal, H. M., Rasheed, T., & Bilal, M. (2018). Design and processing aspects of polymer and composite materials. Green and Sustainable Advanced Materials: Processing and Characterization, 1, 155–189.CrossRefGoogle Scholar
  49. 49.
    Iqbal, H. M., & Keshavarz, T. (2018). Bioinspired polymeric carriers for drug delivery applications. In Stimuli responsive polymeric nanocarriers for drug delivery applications (Vol. 1, pp. 377–404). Woodhead Publishing.Google Scholar
  50. 50.
    Rasheed, T., Bilal, M., Abu-Thabit, N. Y., & Iqbal, H. M. (2018). The smart chemistry of stimuli-responsive polymeric carriers for target drug delivery applications. In Stimuli responsive polymeric nanocarriers for drug delivery applications (Vol. 1, pp. 61–99). Woodhead Publishing.Google Scholar
  51. 51.
    Kalia, S., Dufresne, A., Cherian, B. M., Kaith, B. S., Avérous, L., Njuguna, J., & Nassiopoulos, E. (2011). Cellulose-based bio-and nanocomposites: A review. International Journal of Polymer Science, Article ID 837875, 35 p.Google Scholar
  52. 52.
    Alemdar, A., & Sain, M. (2008). Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology, 68(2), 557–565.CrossRefGoogle Scholar
  53. 53.
    Ayrilmis, N., Ozdemir, F., Nazarenko, O. B., & Visakh, P. M. (2019). Mechanical and thermal properties of Moringa oleifera cellulose-based epoxy nanocomposites. Journal of Composite Materials, 53(5), 669–675.CrossRefGoogle Scholar
  54. 54.
    Gazzotti, S., Rampazzo, R., Hakkarainen, M., Bussini, D., Ortenzi, M. A., Farina, H., … Silvani, A. (2019). Cellulose nanofibrils as reinforcing agents for PLA-based nanocomposites: An in situ approach. Composites Science and Technology, 171, 94–102.CrossRefGoogle Scholar
  55. 55.
    Hassan, M., Berglund, L., Abou-Zeid, R., Hassan, E., Abou-Elseoud, W., & Oksman, K. (2019). Nanocomposite film based on cellulose acetate and lignin-rich rice straw nanofibers. Materials, 12(4), 595.CrossRefGoogle Scholar
  56. 56.
    Shukla, S. K., Mishra, A. K., Arotiba, O. A., & Mamba, B. B. (2013). Chitosan-based nanomaterials: A state-of-the-art review. International Journal of Biological Macromolecules, 59, 46–58.CrossRefGoogle Scholar
  57. 57.
    Cheaburu-Yilmaz, C. N., Yilmaz, O., & Vasile, C. (2015). Eco-friendly chitosan-based nanocomposites: Chemistry and applications. In Eco-friendly polymer nanocomposites (pp. 341–386). New Delhi: Springer.Google Scholar
  58. 58.
    Yassue-Cordeiro, P. H., Severino, P., Souto, E. B., Gomes, E. L., Yoshida, C. M., de Moraes, M. A., & da Silva, C. F. (2018). Chitosan-based nanocomposites for drug delivery. In Applications of nanocomposite materials in drug delivery (pp. 1–26). Woodhead Publishing.Google Scholar
  59. 59.
    Ramachandran, S., Rajinipriya, M., Soulestin, J., & Nagalakshmaiah, M. (2019). Recent developments in chitosan-based nanocomposites. In Bio-based polymers and nanocomposites (pp. 183–215). Springer, Cham.Google Scholar
  60. 60.
    Peter, M., Ganesh, N., Selvamurugan, N., Nair, S. V., Furuike, T., Tamura, H., et al. (2010). Preparation and characterization of chitosan–gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohydrate Polymers, 80(3), 687–694.CrossRefGoogle Scholar
  61. 61.
    Enescu, D., Gardrat, C., Cramail, H., Le Coz, C., Sèbe, G., & Coma, V. (2019). Bio-inspired films based on chitosan, nanoclays and cellulose nanocrystals: Structuring and properties improvement by using water-evaporation-induced self-assembly. Cellulose, 26, 2389–2401.CrossRefGoogle Scholar
  62. 62.
    Qiu, B., Xu, X. F., Deng, R. H., Xia, G. Q., Shang, X. F., & Zhou, P. H. (2019). Construction of chitosan/ZnO nanocomposite film by in situ precipitation. International Journal of Biological Macromolecules, 122, 82–87.CrossRefGoogle Scholar
  63. 63.
    Relinque, J. J., de León, A. S., Hernández-Saz, J., García-Romero, M. G., Navas-Martos, F. J., Morales-Cid, G., et al. (2019). Development of surface-coated polylactic Acid/Polyhydroxyalkanoate (PLA/PHA) nanocomposites. Polymers, 11(3), 400.CrossRefGoogle Scholar
  64. 64.
    Iqbal, H. M., Kyazze, G., Tron, T., & Keshavarz, T. (2018). Laccase from Aspergillus niger: A novel tool to graft multifunctional materials of interests and their characterization. Saudi Journal of Biological Sciences, 25(3), 545–550.CrossRefGoogle Scholar
  65. 65.
    Iqbal, H. M., Kyazze, G., Tron, T., & Keshavarz, T. (2014). Laccase-assisted grafting of poly (3-hydroxybutyrate) onto the bacterial cellulose as backbone polymer: Development and characterization. Carbohydrate Polymers, 113, 131–137.CrossRefGoogle Scholar
  66. 66.
    Iqbal, H. M., Kyazze, G., Locke, I. C., Tron, T., & Keshavarz, T. (2015). Development of bio-composites with novel characteristics: Evaluation of phenol-induced antibacterial, biocompatible and biodegradable behaviors. Carbohydrate Polymers, 131, 197–207.CrossRefGoogle Scholar
  67. 67.
    Iqbal, H. M. N., Kyazze, G., Locke, I. C., Tron, T., & Keshavarz, T. (2015). Development of novel antibacterial active, HaCaT biocompatible and biodegradable CA-g-P(3HB)-EC biocomposites with caffeic acid as a functional entity. Express Polymer Letters, 9(9), 764–772.CrossRefGoogle Scholar
  68. 68.
    Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2004). Biomaterials science: An introduction to materials in medicine. Elsevier.Google Scholar
  69. 69.
    Kim, J. Y., Kim, M., Kim, H., Joo, J., & Choi, J. H. (2003). Electrical and optical studies of organic light emitting devices using SWCNTs-polymer nanocomposites. Optical Materials, 21(1–3), 147–151.CrossRefGoogle Scholar
  70. 70.
    Ruiz-Hitzky, E., Aranda, P., Darder, M., & Rytwo, G. (2010). Hybrid materials based on clays for environmental and biomedical applications. Journal of Materials Chemistry, 20(42), 9306–9321.CrossRefGoogle Scholar
  71. 71.
    Darder, M., Aranda, P., & Ruiz-Hitzky, E. (2012). Chitosan-clay bio-nanocomposites. In Environmental silicate nano-biocomposites (pp. 365–391). London: Springer.Google Scholar
  72. 72.
    Bilal, M., Iqbal, H. M., Hu, H., Wang, W., & Zhang, X. (2017). Enhanced bio-catalytic performance and dye degradation potential of chitosan-encapsulated horseradish peroxidase in a packed bed reactor system. Science of the Total Environment, 575, 1352–1360.CrossRefGoogle Scholar
  73. 73.
    Bilal, M., Rasheed, T., Zhao, Y., & Iqbal, H. M. (2019). Agarose-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties. International Journal of Biological Macromolecules, 124, 742–749.CrossRefGoogle Scholar
  74. 74.
    Othman, S. H. (2014). Bio-nanocomposite materials for food packaging applications: Types of biopolymer and nano-sized filler. Agriculture and Agricultural Science Procedia, 2, 296–303.CrossRefGoogle Scholar
  75. 75.
    de Moura, M. R., Aouada, F. A., Avena-Bustillos, R. J., McHugh, T. H., Krochta, J. M., & Mattoso, L. H. (2009). Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. Journal of Food Engineering, 92(4), 448–453.CrossRefGoogle Scholar
  76. 76.
    Mathew, A. P., Laborie, M. P. G., & Oksman, K. (2009). Cross-linked chitosan/chitin crystal nanocomposites with improved permeation selectivity and pH stability. Biomacromolecules, 10(6), 1627–1632.CrossRefGoogle Scholar
  77. 77.
    Addorisio, V., Esposito, S., & Sannino, F. (2010). Sorption capacity of mesoporous metal oxides for the removal of MCPA from polluted waters. Journal of Agricultural and Food Chemistry, 58(8), 5011–5016.CrossRefGoogle Scholar
  78. 78.
    Celis, R., Adelino, M. A., Hermosín, M. C., & Cornejo, J. (2012). Montmorillonite–chitosan bionanocomposites as adsorbents of the herbicide clopyralid in aqueous solution and soil/water suspensions. Journal of Hazardous Materials, 209, 67–76.CrossRefGoogle Scholar
  79. 79.
    Tirtom, V. N., Dinçer, A., Becerik, S., Aydemir, T., & Çelik, A. (2012). Comparative adsorption of Ni (II) and Cd (II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution. Chemical Engineering Journal, 197, 379–386.CrossRefGoogle Scholar
  80. 80.
    Azzam, E. M., Eshaq, G. H., Rabie, A. M., Bakr, A. A., Abd-Elaal, A. A., El Metwally, A. E., et al. (2016). Preparation and characterization of chitosan-clay nanocomposites for the removal of Cu (II) from aqueous solution. International Journal of Biological Macromolecules, 89, 507–517.CrossRefGoogle Scholar
  81. 81.
    Yan, Y., Yuvaraja, G., Liu, C., Kong, L., Guo, K., Reddy, G. M., et al. (2018). Removal of Pb (II) ions from aqueous media using epichlorohydrin crosslinked chitosan Schiff's base@ Fe3O4 (ECCSB@ Fe3O4). International Journal of Biological Macromolecules, 117, 1305–1313.CrossRefGoogle Scholar
  82. 82.
    Yadollahi, M., Farhoudian, S., & Namazi, H. (2015). One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydrogel beads as drug delivery systems. International Journal of Biological Macromolecules, 79, 37–43.CrossRefGoogle Scholar
  83. 83.
    Zhang, J., Wang, Q., & Wang, A. (2010). In situ generation of sodium alginate/hydroxyapatite nanocomposite beads as drug-controlled release matrices. Acta Biomaterialia, 6(2), 445–454.CrossRefGoogle Scholar
  84. 84.
    Venkatesan, P., Puvvada, N., Dash, R., Kumar, B. P., Sarkar, D., Azab, B., … Mandal, M. (2011). The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials32(15), 3794–3806.CrossRefGoogle Scholar
  85. 85.
    Wu, J., Ding, S., Chen, J., Zhou, S., & Ding, H. (2014). Preparation and drug release properties of chitosan/organomodified palygorskite microspheres. International Journal of Biological Macromolecules, 68, 107–112.CrossRefGoogle Scholar
  86. 86.
    Yadollahi, M., Farhoudian, S., Barkhordari, S., Gholamali, I., Farhadnejad, H., & Motasadizadeh, H. (2016). Facile synthesis of chitosan/ZnO bio-nanocomposite hydrogel beads as drug delivery systems. International Journal of Biological Macromolecules, 82, 273–278.CrossRefGoogle Scholar
  87. 87.
    Zare-Akbari, Z., Farhadnejad, H., Furughi-Nia, B., Abedin, S., Yadollahi, M., & Khorsand-Ghayeni, M. (2016). PH-sensitive bionanocomposite hydrogel beads based on carboxymethyl cellulose/ZnO nanoparticle as drug carrier. International Journal of Biological Macromolecules, 93, 1317–1327.CrossRefGoogle Scholar
  88. 88.
    Madene, A., Jacquot, M., Scher, J., & Desobry, S. (2006). Flavor encapsulation and controlled release–a review. International Journal of Food Science & Technology, 41(1), 1–21.CrossRefGoogle Scholar
  89. 89.
    Urata, M., Iwata, R., Noda, K., Murakami, Y., & Kuroda, A. (2009). Detection of living Salmonella cells using bioluminescence. Biotechnology Letters, 31(5), 737–741.CrossRefGoogle Scholar
  90. 90.
    Liu, H., Nakagawa, K., Kato, D. I., Chaudhary, D., & Tadé, M. O. (2011). Enzyme encapsulation in freeze-dried bionanocomposites prepared from chitosan and xanthan gum blend. Materials Chemistry and Physics, 129(1–2), 488–494.CrossRefGoogle Scholar
  91. 91.
    Gazzaniga, A., Iamartino, P., Maffione, G., & Sangalli, M. E. (1994). Oral delayed-release system for colonic specific delivery. International Journal of Pharmaceutics, 108(1), 77–83.CrossRefGoogle Scholar
  92. 92.
    Ashford, M., Fell, J. T., Attwood, D., Sharma, H., & Woodhead, P. J. (1993). An in vivo investigation into the suitability of pH dependent polymers for colonic targeting. International Journal of Pharmaceutics, 95(1–3), 193–199.CrossRefGoogle Scholar
  93. 93.
    Ribeiro, L. N., Alcântara, A. C., Darder, M., Aranda, P., Araújo-Moreira, F. M., & Ruiz-Hitzky, E. (2014). Pectin-coated chitosan–LDH bionanocomposite beads as potential systems for colon-targeted drug delivery. International Journal of Pharmaceutics, 463(1), 1–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
  2. 2.School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghaiChina
  3. 3.School of Engineering and SciencesTecnologico de MonterreyMonterreyMexico

Personalised recommendations