Influence of Fillers on the Thermal and Mechanical Properties of Biocomposites: An Overview

  • Thiagamani Senthil Muthu KumarEmail author
  • Krishnasamy Senthilkumar
  • Muthukumar Chandrasekar
  • Saravanasankar Subramaniam
  • Sanjay Mavinkere Rangappa
  • Suchart Siengchin
  • Nagarajan Rajini


The mounting interests on the development of materials with superior performance has induced the expansion of filler reinforced composites market around the globe. The use of fillers in the polymeric materials helps the enhancement of the functional properties of the resulting composites. The primary concerns of the polymeric industry are poor material properties, degradability, and cost factors. Hence, embedding the polymer matrix with the fillers becomes inevitable. The polymeric materials with an appropriate filler, better filler/matrix interaction, along with advanced techniques, leads to the formation of superior performing composites for potential applications in various industries. Dedicated efforts have been made to understand the relationship between the filler particles in the polymers and their properties. Reports in the past conclude that the fillers play a vital role in the enhancement in the properties of the composites. This review article presents the influence of fillers on the thermal and mechanical properties of biocomposites.


Fillers Biocomposites Thermal properties Mechanical properties 



This research was supported by the King Mongkut’s University of Technology North Bangkok (KMUTNB), Thailand through the Post Doc Program (Grant No. KMUTNB-61-Post-01 and KMUTNB-63-KNOW-001).


  1. 1.
    Muthu Kumar, S.T., Yorseng, K., Siengchin, S., Ayrilmis, N., & Rajulu, V. A. (2019). Mechanical and thermal properties of spent coffee bean filler/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biocomposites: Effect of recycling. Process Safety and Environmental Protection, 124, 87–195.Google Scholar
  2. 2.
    Mohanty, A. K., Misra, M., & Hinrichsen, G. I. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 276, 11–24.Google Scholar
  3. 3.
    Thiagamani, S. M. K., Krishnasamy, S., & Siengchin, S. (2019). Challenges of biodegradable polymers: An environmental perspective. Applied Science and Engineering Progress, 12(3), 149.Google Scholar
  4. 4.
    Netravali, A. N., & Chabba, S. (2003). Composites get greener. Materials Today, 4(6), 22–29.CrossRefGoogle Scholar
  5. 5.
    Kumar, T.S.M., Rajini, N., Huafeng, T., Rajulu, A.V., Ayrilmis, N., & Siengchin, S. (2018). Improved mechanical and thermal properties of spent coffee bean particulate reinforced poly(propylene carbonate) composites. Particulate Science and Technology.Google Scholar
  6. 6.
    Thiagamani, S. M. K., Nagarajan, R., Jawaid, M., Anumakonda, V., & Siengchin, S. (2017). Utilization of chemically treated municipal solid waste (spent coffee bean powder) as reinforcement in cellulose matrix for packaging applications. Waste Management, 69, 445–454.CrossRefGoogle Scholar
  7. 7.
    Bledzik, A., & Gassan, J. (1993). Composites Reinforced with Cellulose Based Fibers. Progress in Polymer Science, 24(2), 221–274.CrossRefGoogle Scholar
  8. 8.
    Onuegbu, G. C., & Igwe, I. O. (2011). The Effects of Filler Contents and Particle Sizes on the mechanical and end-use properties of snail shell powder filled polypropylene. Materials Sciences and Applications, 2(7), 810–816.CrossRefGoogle Scholar
  9. 9.
    Katz, H. S., & Mileski, J. V. (1987). Handbook of fillers for plastics. Springer Science & Business Media.Google Scholar
  10. 10.
    La Mantia, F.P., Morreale, M., & Mohd Ishak, Z.A. (2005). Processing and mechanical properties of organic filler-polypropylene composites. Journal of Applied Polymer Science, 96(5), 1906–1913.Google Scholar
  11. 11.
    Rozman, H. D., Lai, C. Y., Ismail, H., & Ishak, Z. A. M. (2000). The effect of coupling agents on the mechanical and physical properties of oil palm empty fruit bunch–polypropylene composites. Polymer International, 49(11), 1273–1278.CrossRefGoogle Scholar
  12. 12.
    Canche-Escamilla, G., Rodriguez-Laviada, J., Cauich-Cupul, J. I., Mendizabal, E., Puig, J. E., & Herrera-Franco, P. J. (2002). Flexural, impact and compressive properties of a rigid-thermoplastic matrix/cellulose fiber reinforced composites. Composites Part A: Applied Science and Manufacturing, 33(4), 539–549.CrossRefGoogle Scholar
  13. 13.
    Nair, K. C. M., Kumar, R. P., Thomas, S., Schit, S. C., & Ramamurthy, K. (2000). Rheological behavior of short sisal fiber-reinforced polystyrene composites. Composites Part A: Applied Science and Manufacturing, 31(11), 1231–1240.CrossRefGoogle Scholar
  14. 14.
    Koronis, G., Silva, A., & Fontul, M. (2013). Green composites: A review of adequate materials for automotive applications. Composites Part B: Engineering, 44(1), 120–127.CrossRefGoogle Scholar
  15. 15.
    Ashori, A. (2008). Wood–plastic composites as promising green-composites for automotive industries! Bioresource Technology, 99(11), 4661–4667.CrossRefGoogle Scholar
  16. 16.
    Zah, R., Hischier, R., Leão, A. L., & Braun, I. (2007). Curauá fibers in the automobile industry—A sustainability assessment. Journal of Cleaner Production, 15(11–12), 1032–1040.CrossRefGoogle Scholar
  17. 17.
    Jacob, A. (2006). WPC industry focuses on performance and cost. Reinforced Plastics, 50(5), 32–33.CrossRefGoogle Scholar
  18. 18.
    Hosseinaei, O., Wang, S., Enayati, A. A., & Rials, T. G. (2012). Effects of hemicellulose extraction on properties of wood flour and wood–plastic composites. omposites Part A: Applied Science and Manufacturing, 43(4), 686–694.CrossRefGoogle Scholar
  19. 19.
    Senthil Muthu Kumar, T., Rajini, N., Alavudeen, A., Siengchin, S., Rajulu, V., & Ayrilmis, N. (2019). Development and analysis of completely biodegradable cellulose/banana peel powder composite films. Journal of Natural Fibers, 1–10.Google Scholar
  20. 20.
    Senthil Muthu Kumar, T., Rajini, N., Obi Reddy, K., Varada Rajulu, A., Siengchin, S., & Ayrilmis, N. (2018). All-cellulose composite films with cellulose matrix and Napier grass cellulose fibril fillers. International Journal of Biological Macromolecules.Google Scholar
  21. 21.
    Jayaramudu, J., Reddy, G. S. M., Varaprasad, K., Sadiku, E. R., Sinha Ray, S., & Varada Rajulu, A. (2013). Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites. Carbohydrate Polymers, 93(2), 622–627.Google Scholar
  22. 22.
    Ashok, B., Reddy, K. O., Madhukar, K., Cai, J., Zhang, L., & Rajulu, A. V. (2015). Properties of cellulose/Thespesia lampas short fibers bio-composite films. Carbohydrate Polymers, 127, 110–115.CrossRefGoogle Scholar
  23. 23.
    Feng, Y., et al. (2014). Preparation and characterization of polypropylene carbonate bio-filler (eggshell powder) composite films. International Journal of Polymer Analysis and Characterization, 19(7), 637–647.CrossRefGoogle Scholar
  24. 24.
    Xia, G., et al. (2015). Preparation and properties of biodegradable spent tea leaf powder/poly(propylene carbonate) composite films. International Journal of Polymer Analysis and Characterization, 20(4), 377–387.CrossRefGoogle Scholar
  25. 25.
    Tjong, S. C., & Mai, Y.-W. (2008). Processing-structure-property aspects of particulate-and whisker-reinforced titanium matrix composites. Composites Science and Technology, 68(3–4), 583–601.CrossRefGoogle Scholar
  26. 26.
    Park, S.-J., & Seo, M.-K. (2011). Interface science and composites (Vol. 18). Academic Press.Google Scholar
  27. 27.
    Plackett, D., Andersen, T. L., Pedersen, W. B., & Nielsen, L. (2003). Biodegradable composites based on L-polylactide and jute fibres. Composites Science and Technology, 63(9), 1287–1296.CrossRefGoogle Scholar
  28. 28.
    Oksman, K., & Selin, J.-F. (2004). Plastics and composites from polylactic acid. In Natural fibers, plastics and composites (pp. 149–165). Springe.Google Scholar
  29. 29.
    Xanthos, M. (2010). Functional fillers for plastics. Wiley.Google Scholar
  30. 30.
    Zuiderduin, W. C. J., Westzaan, C., Huetink, J., & Gaymans, R. J. (2003). Toughening of polypropylene with calcium carbonate particles. Polymer (Guildf), 44(1), 261–275.CrossRefGoogle Scholar
  31. 31.
    Tjong, S. C. (2006). Structural and mechanical properties of polymer nanocomposites. Materials Science and Engineering R: Reports 53(3–4), 73–197.CrossRefGoogle Scholar
  32. 32.
    Eiras, D., & Pessan, L. A. (2009). Mechanical properties of polypropylene/calcium carbonate nanocomposites. Materials Research 12(4), 517–522.CrossRefGoogle Scholar
  33. 33.
    Demjén, Z., Pukánszky, B., & Nagy, J. (1998). Evaluation of interfacial interaction in polypropylene/surface treated CaCO3 composites. Composites Part A: Applied Science and Manufacturing 29(3), 323–329.CrossRefGoogle Scholar
  34. 34.
    Fellahi, S., Chikhi, N., & Bakar, M. (2001). Modification of epoxy resin with kaolin as a toughening agent. Journal of Applied Polymer Science, 82(4), 861–878.CrossRefGoogle Scholar
  35. 35.
    Shivamurthy, B., & Prabhuswamyc, M. S. (2009). Influence of SiO2 fillers on sliding wear resistance and mechanical properties of compression moulded glass epoxy composites. Journal of Minerals and Materials Characterization and Engineering, 8(07), 513.Google Scholar
  36. 36.
    Peng, H., Liu, L., Luo, Y., Hong, H., & Jia, D. (2009). Synthesis and characterization of 3-benzothiazolthio-1-propyltriethoxylsilane and its reinforcement for styrene–butadiene rubber/silica composites. Journal of Applied Polymer Science, 112(4), 1967–1973.CrossRefGoogle Scholar
  37. 37.
    Altan, M., & Yildirim, H. (2012). Mechanical and antibacterial properties of injection molded polypropylene/TiO2 nano-composites: Effects of surface modification. Journal of Materials Science and Technology, 28(8), 686–692.CrossRefGoogle Scholar
  38. 38.
    Friedrich, K., Fakirov, S., & Zhang, Z. (2005). Polymer composites: From nano-to macro-scale. Springer Science & Business Media.Google Scholar
  39. 39.
    Atta, A., El-Saeed, A., Al-Lohedan, H., & Wahby, M. (2017). Effect of montmorillonite nanogel composite fillers on the protection performance of epoxy coatings on steel pipelines. Molecules, 22(6), 905.CrossRefGoogle Scholar
  40. 40.
    Majeed, K., et al. (2013). Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials and Design, 46, 391–410.CrossRefGoogle Scholar
  41. 41.
    Ku, H., Wang, H., Pattarachaiyakoop, N., & Trada, M. (2011). A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering, 42(4), 856–873.CrossRefGoogle Scholar
  42. 42.
    Kalia, S., Kaith, B. S., & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polymer Engineering & Science, 49(7), 1253–1272.CrossRefGoogle Scholar
  43. 43.
    S. Ojha, S. K. Acharya, & G. (2015). Raghavendra, Mechanical properties of natural carbon black reinforced polymer composites. Journal of Applied Polymer Science, 132(1).Google Scholar
  44. 44.
    Mittal, G., Dhand, V., Rhee, K. Y., Park, S.-J., & Lee, W. R. (2015). A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. Journal of Industrial and Engineering Chemistry, 21, 11–25.CrossRefGoogle Scholar
  45. 45.
    Hu, K., Kulkarni, D. D., Choi, I., & Tsukruk, V. V. (2014). Graphene-polymer nanocomposites for structural and functional applications. Progress in Polymer Science, 39(11), 1934–1972.CrossRefGoogle Scholar
  46. 46.
    Carroll, D. R., Stone, R. B., Sirignano, A. M., Saindon, R. M., Gose, S. C., & Friedman, M. A. (2001). Structural properties of recycled plastic/sawdust lumber decking planks. Resources, Conservation and Recycling, 31(3), 241–251.CrossRefGoogle Scholar
  47. 47.
    Matuana, L. M., & Stark, N. M. (2015). The use of wood fibers as reinforcements in composites. In Biofiber reinforcements in composite materials (pp. 648–688). Elsevier.Google Scholar
  48. 48.
    Sanjay, M. R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., & Pradeep, S. (2018). Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production 172, 566–581.CrossRefGoogle Scholar
  49. 49.
    Siró, I., & Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose, 17(3), 459–494.CrossRefGoogle Scholar
  50. 50.
    Lu, J., Wang, T., & Drzal, L. T. (2008). Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Composites Part A: Applied Science and Manufacturing, 39(5), 738–746.CrossRefGoogle Scholar
  51. 51.
    Wu, J., et al. (2010). Structure and properties of cellulose/chitin blended hydrogel membranes fabricated via a solution pre-gelation technique. Carbohydrate Polymers, 79(3), 677–684.CrossRefGoogle Scholar
  52. 52.
    Saba, N., Alothman, O. Y., Almutairi, Z., & Jawaid, M. (2019). Magnesium hydroxide reinforced kenaf fibers/epoxy hybrid composites: Mechanical and thermomechanical properties. Construction and Building Materials, 201, 138–148.CrossRefGoogle Scholar
  53. 53.
    Essabir, H., Boujmal, R., Bensalah, M. O., Rodrigue, D., Bouhfid, R., & el kacem Qaiss, A. (2016). Mechanical and thermal properties of hybrid composites: Oil-palm fiber/clay reinforced high density polyethylene. Mechanics of Materials, 98, 36–43.Google Scholar
  54. 54.
    Neher, B., Bhuiyan, M. M. R., Kabir, H., Gafur, M. A., Qadir, M. R., & Ahmed, F. (2016). Thermal properties of palm fiber and palm fiber-reinforced ABS composite. Journal of Thermal Analysis and Calorimetry, 124(3), 1281–1289.CrossRefGoogle Scholar
  55. 55.
    Vivek, S., & Kanthavel, K. (2019). Effect of bagasse ash filled epoxy composites reinforced with hybrid plant fibres for mechanical and thermal properties. Composites Part B: Engineering, 160, 170–176.CrossRefGoogle Scholar
  56. 56.
    Thiagamani, S. M. K., Rajini, N., Siengchin, S., Varada Rajulu, A., Hariram, N., & Ayrilmis, N. (2019). Influence of silver nanoparticles on the mechanical, thermal and antimicrobial properties of cellulose-based hybrid nanocomposites. Composites Part B: Engineering.Google Scholar
  57. 57.
    Saba, N., Paridah, M. T., Abdan, K., & Ibrahim, N. A. (2016). Dynamic mechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites. Construction and Building Materials, 124, 133–138.CrossRefGoogle Scholar
  58. 58.
    Saba, N., Paridah, M. T., Abdan, K., & Ibrahim, N. A. (2016). Physical, structural and thermomechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites. Materials Chemistry and Physics, 184, 64–71.CrossRefGoogle Scholar
  59. 59.
    Saba, N., Jawaid, M., Paridah, M. T., & Alothman, O. (2017). Physical, structural and thermomechanical properties of nano oil palm empty fruit bunch filler based epoxy nanocomposites. Industrial Crops and Products, 108, 840–843.CrossRefGoogle Scholar
  60. 60.
    Thiagamani, S. M. K., Nagarajan, R., Jawaid, M., Anumakonda, V., & Siengchin, S. (2017). Utilization of chemically treated municipal solid waste (spent coffee bean powder) as reinforcement in cellulose matrix for packaging applications. Waste Management, 69.Google Scholar
  61. 61.
    Li, X. H., Meng, Y. Z., Wang, S. J., Rajulu, A. V., & Tjong, S. C. (2004). Completely biodegradable composites of poly (propylene carbonate) and short, lignocellulose fiber Hildegardia populifolia. Journal of Polymer Science Part B: Polymer Physics, 42(4), 666–675.CrossRefGoogle Scholar
  62. 62.
    Roy, K., Debnath, S. C., Das, A., Heinrich, G., & Potiyaraj, P. (2018). Exploring the synergistic effect of short jute fiber and nanoclay on the mechanical, dynamic mechanical and thermal properties of natural rubber composites. Polymer Testing, 67, 487–493.CrossRefGoogle Scholar
  63. 63.
    Biswal, M., Mohanty, S., & Nayak, S. K. (2009). Influence of organically modified nanoclay on the performance of pineapple leaf fiber-reinforced polypropylene nanocomposites. Journal of Applied Polymer Science, 114(6), 4091–4103.CrossRefGoogle Scholar
  64. 64.
    Huda, M. S., Drzal, L. T., Mohanty, A. K., & Misra, M. (2007). The effect of silane treated-and untreated-talc on the mechanical and physico-mechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites. Composites Part B: Engineering, 38(3), 367–379.CrossRefGoogle Scholar
  65. 65.
    Kim, I.-H., Sim, H.-W., Hong, H.-H., Kim, D.-W., Lee, W., & Lee, D.-K. (2019). Effect of filler size on thermal properties of paraffin/silver nanoparticle composites. Korean Journal of Chemical Engineering, 36(6), 1004–1012.CrossRefGoogle Scholar
  66. 66.
    Chen, Y.-C., Lin, H.-C., & Lee, Y.-D. (2003). The effects of filler content and size on the properties of PTFE/SiO2 composites. Journal of Polymer Research, 10(4), 247–258.CrossRefGoogle Scholar
  67. 67.
    Yussuf, A. A., Massoumi, I., & Hassan, A. (2010). Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: The influence of the natural fibers on the mechanical, thermal and biodegradability properties. Journal of Polymers and the Environment, 18(3), 422–429.CrossRefGoogle Scholar
  68. 68.
    Nourbakhsh, A., Karegarfard, A., Ashori, A., & Nourbakhsh, A. (2010). Effects of particle size and coupling agent concentration on mechanical properties of particulate-filled polymer composites. Journal of Thermoplastic Composite Materials, 23(2), 169–174.CrossRefGoogle Scholar
  69. 69.
    Bijwe, J., Sen, S., & Ghosh, A. (2005). Influence of PTFE content in PEEK–PTFE blends on mechanical properties and tribo-performance in various wear modes. Wear, 258(10), 1536–1542.CrossRefGoogle Scholar
  70. 70.
    Kumar, T. S. M., Rajini, N., Tian, H., Rajulu, A. V., Winowlin Jappes, J. T., & Siengchin, S. (2017). Development and analysis of biodegradable poly(propylene carbonate)/tamarind nut powder composite films. International Journal of Polymer Analysis and Characterization.Google Scholar
  71. 71.
    Senthil Muthu Kumar, T., Rajini, N., Siengchin, S., Varada Rajulu, A. & Ayrilmis, N. (2019). Influence of Musa acuminate bio-filler on the thermal, mechanical and visco-elastic behavior of poly (propylene) carbonate biocomposites. International Journal of Polymer Analysis and Characterization, 1–8.Google Scholar
  72. 72.
    Duan, J., Reddy, K. O., Ashok, B., Cai, J., Zhang, L., & Rajulu, A. V. (2016). Effects of spent tea leaf powder on the properties and functions of cellulose green composite films. Journal of Environmental Chemical Engineering, 4(1), 440–448.CrossRefGoogle Scholar
  73. 73.
    Senthil Muthu Kumar, T., Rajini, N., Jawaid, M., Varada Rajulu, A., & Winowlin Jappes, J. T. (2018). Preparation and properties of cellulose/tamarind nut powder green composites: (Green composite using agricultural waste reinforcement). Journal of Natural Fibers.Google Scholar
  74. 74.
    Nallamuthu, I. D. M. P., et al. (2019). Antimicrobial properties of poly(propylene) carbonate/Ag nanoparticle-modified tamarind seed polysaccharide with composite films. Ionics (Kiel).Google Scholar
  75. 75.
    Indira Devi, M. P., et al. (2019). Biodegradable poly(propylene) carbonate using in-situ generated CuNPs coated Tamarindus indica filler for biomedical applications. Materials Today Communications.Google Scholar
  76. 76.
    Indira Devi, M. P., Nallamuthu, N., Rajini, N., Varada Rajulu, A., Hari Ram, N., & Siengchin, S. (2018). Cellulose hybrid nanocomposites using Napier grass fibers with in situ generated silver nanoparticles as fillers for antibacterial applications. International Journal of Biological Macromolecules, 118, 99–106.Google Scholar
  77. 77.
    Ervina, J., Mariatti, M., & Hamdan, S. (2016). Effect of filler loading on the tensile properties of multi-walled carbon nanotube and graphene nanopowder filled epoxy composites. Procedia Chemistry, 19, 897–905.CrossRefGoogle Scholar
  78. 78.
    Hardinnawirda K., & SitiRabiatull Aisha, I. (2012). Effect of rice husks as filler in polymer matrix composites. Journal of Mechanical Engineering Science, 2, 181–186.Google Scholar
  79. 79.
    Lu, T., et al. (2014). Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly(lactic acid) composites. Composites Part B: Engineering, 62, 191–197.CrossRefGoogle Scholar
  80. 80.
    Islam, M. N., Rahman, M. R., Haque, M. M., & Huque, M. M. (2010). Physico-mechanical properties of chemically treated coir reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 41(2), 192–198.CrossRefGoogle Scholar
  81. 81.
    Gwon, J. G., Lee, S. Y., Chun, S. J., Doh, G. H., & Kim, J. H. (2010). Effects of chemical treatments of hybrid fillers on the physical and thermal properties of wood plastic composites. Composites Part A: Applied Science and Manufacturing 41(10), 1491–1497.CrossRefGoogle Scholar
  82. 82.
    Panaitescu, D. M., et al. (2016). Influence of hemp fibers with modified surface on polypropylene composites. Journal of Industrial and Engineering Chemistry, 37, 137–146.CrossRefGoogle Scholar
  83. 83.
    Rahman, W., Sin, L. T., Rahmat, A. R., Isa, N. M., Salleh, M. S. N., & Mokhtar, M. (2011). Comparison of rice husk-filled polyethylene composite and natural wood under weathering effects. Journal of Composite Materials, 45(13), 1403–1410.CrossRefGoogle Scholar
  84. 84.
    Homkhiew, C., Ratanawilai, T., & Thongruang, W. (2014). Effects of natural weathering on the properties of recycled polypropylene composites reinforced with rubberwood flour. Industrial Crops and Products, 56, 52–59.CrossRefGoogle Scholar
  85. 85.
    Hammiche, D., Boukerrou, A., Djidjelli, H., Corre, Y.-M., Grohens, Y., & Pillin, I. (2013). Hydrothermal ageing of alfa fiber reinforced polyvinylchloride composites. Construction and Building Materials, 47, 293–300.CrossRefGoogle Scholar
  86. 86.
    Arjmandi, R., Hassan, A., Majeed, K., & Zakaria, Z. (2015). Rice husk filled polymer composites. International Journal of Polymer Science, 2015.Google Scholar
  87. 87.
    Hamim, F. A. R., Ghani, S. A., & Zainudin, F. (2016). Properties of recycled high density polyethylene (RHDPE)/ethylene vinyl acetate (EVA) blends: The effect of blends composition and compatibilisers. Journal of Physical Science, 27(2), 23.CrossRefGoogle Scholar
  88. 88.
    Zaaba, N. F., & Ismail, H. (2019). Thermoplastic/natural filler composites: A short review. Journal of Physical Science, 30, 81–99.CrossRefGoogle Scholar
  89. 89.
    Mochane, M. J., Mokhena, T. C., Mokhothu, T. H., Mtibe, A., Sadiku, E. R., Ray, S. S., et al. (2019). Recent progress on natural fiber hybrid composites for advanced applications: A review. eXPRESS Polymer Letters, 13(2), 159–198.CrossRefGoogle Scholar
  90. 90.
    Peças, P., Carvalho, H., Salman, H., & Leite, M. (2018). Natural fibre composites and their applications: A review. Journal of Composites Science, 2(4), 66.CrossRefGoogle Scholar
  91. 91.
    Holbery, J., & Houston, D. (2006). Natural-fiber-reinforced polymer composites in automotive applications. JOM Journal of the Minerals Metals and Materials Society, 58(11), 80–86.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Thiagamani Senthil Muthu Kumar
    • 1
    • 2
    Email author
  • Krishnasamy Senthilkumar
    • 1
    • 2
  • Muthukumar Chandrasekar
    • 3
  • Saravanasankar Subramaniam
    • 2
  • Sanjay Mavinkere Rangappa
    • 2
  • Suchart Siengchin
    • 2
  • Nagarajan Rajini
    • 1
  1. 1.Department of Mechanical EngineeringKalasalingam Academy of Research and EducationKrishnankoilIndia
  2. 2.Department of Mechanical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS)King Mongkut’s University of Technology North BangkokBangkokThailand
  3. 3.Department of Aerospace Engineering, Faculty of EngineeringUniversity Putra MalaysiaSerdangMalaysia

Personalised recommendations