Advertisement

Arundo Donax Fibers as Green Materials for Oil Spill Recovery

  • Luigi CalabreseEmail author
  • Elpida Piperopoulos
  • Vincenzo Fiore
Chapter
  • 28 Downloads

Abstract

Oil spillage is considered one of the most devastating forms of pollution, for its effect on the environment, particularly on aquatic life. This kind of disaster can impact in two ways, directly caused by the polluting spilled oil or due to the cleanup process. In fact, oil floating on water does not allow sunlight to pass through and its toxicity puts the life of aquatic animals at risk. Furthermore, other factors can also contribute to this damage. In fact, a wrong oil recovery system can add a further pollution level. Polymer sorbents used for the oil spill recovery, if not properly treated, increase the level of marine and ground pollution. For this reason, in the last years, green materials are increasingly studied and used for this purpose. Green adsorbents (such as lignocellulosic, fruits fibers) are recently employed with excellent results. Aim of this book chapter is the evaluation of the oil sorption properties of natural fibers extracted from the stem of the giant reed Arundo Donax L., a perennial rhizomatous grass belonging to the Poaceae family that grows naturally all around the world thanks to its ability to tolerate different climatic conditions.

References

  1. 1.
    Ariharasudhan, S., & Dhurai, B. (2019). Adsorption of oil from water surfaces using fibrous material—An overview. Man-Made Textiles in India, 47(4), 124–126.Google Scholar
  2. 2.
    Aguiar, F. C. F., & Ferreira, M. T. (2013). Plant invasions in the rivers of the Iberian Peninsula, south-western Europe: A review. Plant Biosystems—An International Journal Dealing with All Aspects of Plant Biology, 147(4), 1107–1119.CrossRefGoogle Scholar
  3. 3.
    Celesti-Grapow, L., Capotorti, G., Del Vico, E., Lattanzi, E., Tilia, A., & Blasi, C. (2013). The vascular flora of Rome. Plant Biosystems—An International Journal Dealing with All Aspects of Plant Biology, 147(4), 1059–1087.CrossRefGoogle Scholar
  4. 4.
    Sharma, K., Kushwaha, S. P. S., & Gopal, B. (1998). A comparative study of stand structure and standing crops of two wetland species, Arundo Donax and Phragmites karka, and primary production in Arundo Donax with observations on the effect of clipping. Tropical Ecology,39, 3–14.Google Scholar
  5. 5.
    Pompeiano, A., Remorini, D., Vita, F., Guglielminetti, L., Miele, S., & Morini, S. (2017). Growth and physiological response of Arundo donax L. to controlled drought stress and recovery. Plant Biosystems—An International Journal Dealing with All Aspects of Plant Biology, 151 (5), 906–914.Google Scholar
  6. 6.
    Perdue, R. E. (1958). Arundo Donax—Source of musical reeds and industrial cellulose. Economic Botany, 12(4), 368–404.CrossRefGoogle Scholar
  7. 7.
    Weidenfeller, B., Lambri, O.A., Bonifacich, F.G., Arlic, U., Gargicevich, D., Weidenfeller, B., et al. (2018). Damping of the woodwind instrument reed material Arundo Donax L. Materials Research, 21 (suppl 2).Google Scholar
  8. 8.
    Obataya, E., Umezawa, T., Nakatsubo, F., & Norimoto, M. (1999). The effects of water soluble extractives on the acoustic properties of reed (Arundo Donax L.). Holzforschung, 53 (1), 63–67.Google Scholar
  9. 9.
    Pilu, R., Bucci, A., Cerino Badone, F., & Landoni, M. (2012). Giant reed (Arundo Donax L.): A weed plant or a promising energy crop? African Journal of Biotechnology, 11(38), 9163–9174.Google Scholar
  10. 10.
    Ververis, C., Georghiou, K., Christodoulakis, N., Santas, P., & Santas, R. (2004). Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Industrial Crops and Products, 19(3), 245–254.CrossRefGoogle Scholar
  11. 11.
    Papazoglou, E. G., Karantounias, G. A., Vemmos, S. N., & Bouranis, D. L. (2005). Photosynthesis and growth responses of giant reed (Arundo Donax L.) to the heavy metals Cd and Ni. Environment International, 31 (2), 243–249.Google Scholar
  12. 12.
    Flores, J. A., Pastor, J. J., Martinez-Gabarron, A., Gimeno-Blanes, F. J., Rodríguez-Guisado, I., & Frutos, M. J. (2011). Arundo Donax chipboard based on urea-formaldehyde resin using under 4 mm particles size meets the standard criteria for indoor use. Industrial Crops and Products, 34(3), 1538–1542.CrossRefGoogle Scholar
  13. 13.
    Fiore, V., Scalici, T., & Valenza, A. (2014). Characterization of a new natural fiber from Arundo Donax L. as potential reinforcement of polymer composites. Carbohydrate Polymers, 106, 77–83.CrossRefGoogle Scholar
  14. 14.
    Fiore, V., Scalici, T., Vitale, G., & Valenza, A. (2014). Static and dynamic mechanical properties of Arundo Donax fillers-epoxy composites. Materials & Design, 57, 456–464.CrossRefGoogle Scholar
  15. 15.
    Fiore, V., Botta, L., Scaffaro, R., Valenza, A., & Pirrotta, A. (2014). PLA based biocomposites reinforced with Arundo Donax fillers. Composites Science and Technology, 105, 110–117.CrossRefGoogle Scholar
  16. 16.
    Ismail, Z. Z., & Jaeel, A. J. (2014). A novel use of undesirable wild giant reed biomass to replace aggregate in concrete. Construction and Building Materials, 67, 68–73.CrossRefGoogle Scholar
  17. 17.
    Scalici, T., Fiore, V., & Valenza, A. (2016). Effect of plasma treatment on the properties of Arundo Donax L. leaf fibres and its bio-based epoxy composites: A preliminary study. Composites Part B: Engineering, 94, 167–175.CrossRefGoogle Scholar
  18. 18.
    Sun, R. (2010). Cereal straw as a resource for sustainable biomaterials and biofuels : Chemistry, extractives, lignins, hemicelluloses and cellulose. Elsevier.Google Scholar
  19. 19.
    Chen, B., Ye, X., Zhang, B., Jing, L., & Lee, K. (2019). Marine oil spills—Preparedness and countermeasures. World Seas: An Environmental Evaluation, 407–426.Google Scholar
  20. 20.
    DeLeo, D. M., Ruiz-Ramos, D. V., Baums, I. B., & Cordes, E. E. (2016). Response of deep-water corals to oil and chemical dispersant exposure. Deep Sea Research Part II: Topical Studies in Oceanography, 129, 137–147.CrossRefGoogle Scholar
  21. 21.
    Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32(11), 180.CrossRefGoogle Scholar
  22. 22.
    Ceylan, D., Dogu, S., Karacik, B., Yakan, S. D., Okay, O. S., & Okay, O. (2009). Evaluation of butyl rubber as sorbent material for the removal of oil and polycyclic aromatic hydrocarbons from seawater. Environmental Science & Technology, 43(10), 3846–3852.CrossRefGoogle Scholar
  23. 23.
    Wei, Q. F., Mather, R. R., Fotheringham, A. F., & Yang, R. D. (2003). Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery. Marine Pollution Bulletin, 46(6), 780–783.CrossRefGoogle Scholar
  24. 24.
    Nikkhah, A. A., Zilouei, H., Asadinezhad, A., & Keshavarz, A. (2015). Removal of oil from water using polyurethane foam modified with nanoclay. Chemical Engineering Journal, 262, 278–285.CrossRefGoogle Scholar
  25. 25.
    Feng, Y., & Xiao, C. F. (2006). Research on butyl methacrylate–lauryl methacrylate copolymeric fibers for oil absorbency. Journal of Applied Polymer Science, 101(3), 1248–1251.CrossRefGoogle Scholar
  26. 26.
    Yang, L., Wang, Z., Li, X., Yang, L., Lu, C., & Zhao, S. (2016). Hydrophobic modification of platanus fruit fibers as natural hollow fibrous sorbents for oil spill cleanup. Water, Air, & Soil Pollution, 227(9), 346.CrossRefGoogle Scholar
  27. 27.
    Annunciado, T. R., Sydenstricker, T. H. D., & Amico, S. C. (2005). Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Marine Pollution Bulletin, 50(11), 1340–1346.CrossRefGoogle Scholar
  28. 28.
    Adhithya, N., Goel, M., & Das, A. (2017). Use of bamboo fiber in oil water separation. International Journal of Civil Engineering and Technology, 8(6), 925–931.Google Scholar
  29. 29.
    Liu, J., & Wang, X. (2019). A new method to prepare oil adsorbent utilizing waste paper and its application for oil spill clean-ups. BioResources, 14(2), 3886–3898.Google Scholar
  30. 30.
    Wang, S., Peng, X., Zhong, L., Tan, J., Jing, S., Cao, X., et al. (2015). An ultralight, elastic, cost-effective, and highly recyclable superabsorbent from microfibrillated cellulose fibers for oil spillage cleanup. Journal of Materials Chemistry A, 3(16), 8772–8781.CrossRefGoogle Scholar
  31. 31.
    Tu, L., Duan, W., Xiao, W., Fu, C., Wang, A., & Zheng, Y. (2018). Calotropis gigantea fiber derived carbon fiber enables fast and efficient absorption of oils and organic solvents. Separation and Purification Technology, 192, 30–35.CrossRefGoogle Scholar
  32. 32.
    Cao, S., Dong, T., Xu, G., & Wang, F. (2018). Cyclic filtration behavior of structured cattail fiber assembly for oils removal from wastewater. Environmental Technology, 39(14), 1833–1840.CrossRefGoogle Scholar
  33. 33.
    Liu, Y., Peng, Y., Zhang, T., Qiu, F., & Yuan, D. (2018). Superhydrophobic, ultralight and flexible biomass carbon aerogels derived from sisal fibers for highly efficient oil–water separation. Cellulose, 25(5), 3067–3078.CrossRefGoogle Scholar
  34. 34.
    Feng, Y., Liu, S., Liu, G., & Yao, J. (2017). Facile and fast removal of oil through porous carbon spheres derived from the fruit of Liquidambar formosana. Chemosphere, 170, 68–74.CrossRefGoogle Scholar
  35. 35.
    Husseien, M., Amer, A. A., El-Maghraby, A., & Taha, N. A. (2009). Availability of barley straw application on oil spill clean up. International Journal of Environmental Science & Technology, 6(1), 123–130.CrossRefGoogle Scholar
  36. 36.
    Dong, T., Xu, G., & Wang, F. (2015). Adsorption and adhesiveness of kapok fiber to different oils. Journal of Hazardous Materials, 296, 101–111.CrossRefGoogle Scholar
  37. 37.
    Said, A. E.-A. A., Ludwick, A. G., & Aglan, H. A. (2009). Usefulness of raw bagasse for oil absorption: A comparison of raw and acylated bagasse and their components. Bioresource Technology, 100(7), 2219–2222.CrossRefGoogle Scholar
  38. 38.
    Wang, J., Geng, G., Liu, X., Han, F., & Xu, J. (2016). Magnetically superhydrophobic kapok fiber for selective sorption and continuous separation of oil from water. Chemical Engineering Research and Design, 115, 122–130.CrossRefGoogle Scholar
  39. 39.
    De Rosa, I. M., Kenny, J. M., Puglia, D., Santulli, C., & Sarasini, F. (2010). Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology, 70(1), 116–122.CrossRefGoogle Scholar
  40. 40.
    Cheu, S. C., Kong, H., Song, S. T., Johari, K., Saman, N., Che Yunus, M. A., et al. (2016). Separation of dissolved oil from aqueous solution by sorption onto acetylated lignocellulosic biomass—Equilibrium, kinetics and mechanism studies. Journal of Environmental Chemical Engineering, 4(1), 864–881.CrossRefGoogle Scholar
  41. 41.
    Wahi, R., Chuah Abdullah, L., Nourouzi Mobarekeh, M., Ngaini, Z., & Choong Shean Yaw, T. (2017). Utilization of esterified sago bark fibre waste for removal of oil from palm oil mill effluent. Journal of Environmental Chemical Engineering, 5(1), 170–177.CrossRefGoogle Scholar
  42. 42.
    Aloulou, F., Boufi, S., & Labidi, J. (2006). Modified cellulose fibres for adsorption of organic compound in aqueous solution. Separation and Purification Technology, 52(2), 332–342.CrossRefGoogle Scholar
  43. 43.
    Nishi, Y., Iwashita, N., Sawada, Y., & Inagaki, M. (2002). Sorption kinetics of heavy oil into porous carbons. Water Research, 36(20), 5029–5036.CrossRefGoogle Scholar
  44. 44.
    Alaa El-Din, G., Amer, A. A., Malsh, G., & Hussein, M. (2018). Study on the use of banana peels for oil spill removal. Alexandria Engineering Journal, 57(3), 2061–2068.CrossRefGoogle Scholar
  45. 45.
    Piperopoulos, E., Calabrese, L., Mastronardo, E., Proverbio, E., & Milone, C. (2018). Synthesis of reusable silicone foam containing carbon nanotubes for oil spill remediation. Journal of Applied Polymer Science, 135(14), 46067.CrossRefGoogle Scholar
  46. 46.
    Dong, T., Cao, S., & Xu, G. (2017). Highly efficient and recyclable depth filtrating system using structured kapok filters for oil removal and recovery from wastewater. Journal of Hazardous Materials, 321, 859–867.CrossRefGoogle Scholar
  47. 47.
    Piperopoulos, E., Calabrese, L., Mastronardo, E., Abdul Rahim, S.H., Proverbio, E., & Milone, C. (2019). Assessment of sorption kinetics of carbon nanotube-based composite foams for oil recovery application. Journal of Applied Polymer Science, 136 (14).Google Scholar
  48. 48.
    Wang, N., & Deng, Z. (2019). Synthesis of magnetic, durable and superhydrophobic carbon sponges for oil/water separation. Materials Research Bulletin, 115, 19–26.CrossRefGoogle Scholar
  49. 49.
    Baker, R. W. (2004). Membrane technology and applications. Chichester, UK: Wiley.CrossRefGoogle Scholar
  50. 50.
    Voisin, H., Bergström, L., Liu, P., Mathew, A., Voisin, H., Bergström, L., et al. (2017). Nanocellulose-based materials for water purification. Nanomaterials, 7(3), 57.CrossRefGoogle Scholar
  51. 51.
    Cui, Y., Xu, G., & Liu, Y. (2014). Oil sorption mechanism and capability of cattail fiber assembly. Journal of Industrial Textiles, 43(3), 330–337.CrossRefGoogle Scholar
  52. 52.
    Wang, J., & Liu, S. (2019). Remodeling of raw cotton fiber into flexible, squeezing-resistant macroporous cellulose aerogel with high oil retention capability for oil/water separation. Separation and Purification Technology, 221, 303–310.CrossRefGoogle Scholar
  53. 53.
    Phanthong, P., Reubroycharoen, P., Kongparakul, S., Samart, C., Wang, Z., Hao, X., et al. (2018). Fabrication and evaluation of nanocellulose sponge for oil/water separation. Carbohydrate Polymers, 190, 184–189.CrossRefGoogle Scholar
  54. 54.
    Tesfaye, T., Sithole, B., & Ramjugernath, D. (2018). Valorisation of waste chicken feathers: Green oil sorbent. International Journal of Chemical Sciences, 16(3), 1–13.Google Scholar
  55. 55.
    Lee, J. G., Larive, L. L., Valsaraj, K. T., & Bharti, B. (2018). Binding of lignin nanoparticles at oil-water interfaces: An ecofriendly alternative to oil spill recovery. ACS Applied Materials & Interfaces, 10(49), 43282–43289.CrossRefGoogle Scholar
  56. 56.
    Wang, F., Xie, T., Zhong, W., Ou, J., Xue, M., & Li, W. (2019). A renewable and biodegradable all-biomass material for the separation of oil from water surface. Surface and Coatings Technology, 372, 84–92.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Luigi Calabrese
    • 1
    Email author
  • Elpida Piperopoulos
    • 1
  • Vincenzo Fiore
    • 2
  1. 1.Department of EngineeringUniversity of MessinaMessinaItaly
  2. 2.Department of EngineeringUniversity of PalermoPalermoItaly

Personalised recommendations