Advertisement

Surface Modification Techniques for the Preparation of Different Novel Biofibers for Composites

  • Akarsh VermaEmail author
  • Avinash Parashar
  • Naman Jain
  • V. K. Singh
  • Sanjay Mavinkere Rangappa
  • Suchart Siengchin
Chapter
  • 28 Downloads

Abstract

This chapter reports on the various physical and chemical methods used in modifying the natural fibers properties for application in reinforcing composites. Low cost, low density and biodegradable nature of bio fibers have attracted composite industries to develop various useful products out of them. Nevertheless, associated disadvantages with these fibers are that they have poor compatibility with matrix, relative high water absorption capacity and sticking in bundles. For eradication of such unwanted characteristics, several physical and chemical treatments have been examined by the researchers. These treatments tend to alter the surface morphology and chemical structure for enhancing the adhesive strength between fiber and matrix. Mechanisms that are involved in this enhancement are the increase in fiber surface roughness and alteration in chemical polarity of natural fibers.

References

  1. 1.
    Mukhopadhyay, S., & Fangueiro, R. (2009). Physical modification of natural fibers and thermoplastic films for composites—A review. Journal of Thermoplastic Composite Materials, 22(2), 135–162.CrossRefGoogle Scholar
  2. 2.
    Oksman, K., Skrifvars, M., & Selin, J. F. (2003). Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology, 63(9), 1317–1324.CrossRefGoogle Scholar
  3. 3.
    Pickering, K. L., Efendy, M. A., & Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, 98–112.CrossRefGoogle Scholar
  4. 4.
    Verma, A., Singh, V. K., Verma, S. K., & Sharma, A. (2016). Human hair: A biodegradable composite fiber–a review. International Journal of Waste Resources, 6, 1–4.CrossRefGoogle Scholar
  5. 5.
    Verma, A., & Singh, V. K. (2016). Experimental investigations on thermal properties of coconut shell particles in DAP solution for use in green composite applications. Journal of Material Science and Engineering, 5(3), 1–5.Google Scholar
  6. 6.
    Verma, A., Singh, C., Singh, V. K., & Jain, N. (2019). Fabrication and characterization of chitosan-coated sisal fiber—Phytagel modified soy protein-based green composite. Journal of Composite Materials, 53(18), 2481–2504.CrossRefGoogle Scholar
  7. 7.
    Rana, A. K., Mandal, A., & Bandyopadhyay, S. (2003). Short jute fiber reinforced polypropylene composites: Effect of compatibiliser, impact modifier and fiber loading. Composites Science and Technology, 63(6), 801–806.CrossRefGoogle Scholar
  8. 8.
    Singleton, A. C. N., Baillie, C. A., Beaumont, P. W. R., & Peijs, T. (2003). On the mechanical properties, deformation and fracture of a natural fibre/recycled polymer composite. Composites Part B: Engineering, 34(6), 519–526.CrossRefGoogle Scholar
  9. 9.
    Verma, A., Singh, V. K., & Arif, M. (2016). Study of flame retardant and mechanical properties of coconut shell particles filled composite. Research and Reviews: Journal of Material Sciences, 4(3), 1–5.Google Scholar
  10. 10.
    Verma, A., Parashar, A., & Packirisamy, M. (2018). Atomistic modeling of graphene/hexagonal boron nitride polymer nanocomposites: A review. Wiley Interdisciplinary Reviews: Computational Molecular Science, 8(3), e1346.Google Scholar
  11. 11.
    Verma, A., Parashar, A., & Packirisamy, M. (2019). Effect of grain boundaries on the interfacial behaviour of graphene-polyethylene nanocomposite. Applied Surface Science, 470, 1085–1092.CrossRefGoogle Scholar
  12. 12.
    Keller, A. (2003). Compounding and mechanical properties of biodegradable hemp fibre composites. Composites Science and Technology, 63(9), 1307–1316.CrossRefGoogle Scholar
  13. 13.
    Jain, N., Singh, V. K., & Chauhan, S. (2017). Review on effect of chemical, thermal, additive treatment on mechanical properties of basalt fiber and their composites. Journal of the Mechanical Behavior of Materials, 26(5–6), 205–211.Google Scholar
  14. 14.
    Jain, N., Verma, A., & Singh, V. K. (2019). Dynamic mechanical analysis and creep-recovery behaviour of polyvinyl alcohol based cross-linked biocomposite reinforced with basalt fiber. Materials Research Express, 6(10), 105373.CrossRefGoogle Scholar
  15. 15.
    Jain, N., Singh, V. K., & Chauhan, S. (2017). A review on mechanical and water absorption properties of polyvinyl alcohol based composites/films. Journal of the Mechanical Behavior of Materials, 26(5–6), 213–222.Google Scholar
  16. 16.
    Cruz, J., & Fangueiro, R. (2016). Surface modification of natural fibers: A review. Procedia Engineering, 155, 285–288.CrossRefGoogle Scholar
  17. 17.
    Jain, N., Singh, V. K., & Chauhan, S. (2019). Dynamic and creep analysis of polyvinyl alcohol based films blended with starch and protein. Journal of Polymer Engineering, 39(1), 35–47.CrossRefGoogle Scholar
  18. 18.
    Chaurasia, A., Verma, A., Parashar, A., & Mulik, R. S. (2019). Experimental and computational studies to analyze the effect of h-BN nanosheets on mechanical behavior of h-BN/Polyethylene nanocomposites. The Journal of Physical Chemistry C, 123(32), 20059–20070.CrossRefGoogle Scholar
  19. 19.
    Deepmala, K., Jain, N., Singh, V. K., & Chauhan, S. (2018). Fabrication and characterization of chitosan coated human hair reinforced phytagel modified soy protein-based green composite. Journal of the Mechanical Behavior of Materials, 27(1–2), 1–8.Google Scholar
  20. 20.
    Wielage, B., Lampke, T., Utschick, H., & Soergel, F. (2003). Processing of natural-fibre reinforced polymers and the resulting dynamic–mechanical properties. Journal of Materials Processing Technology, 139(1–3), 140–146.CrossRefGoogle Scholar
  21. 21.
    Kessler, R. W., Becker, U., Kohler, R., & Goth, B. (1998). Steam explosion of flax—a superior technique for upgrading fibre value. Biomass and Bioenergy, 14(3), 237–249.CrossRefGoogle Scholar
  22. 22.
    Prasad, B. M., & Sain, M. M. (2003). Mechanical properties of thermally treated hemp fibers in inert atmosphere for potential composite reinforcement. Materials Research Innovations, 7(4), 231–238.CrossRefGoogle Scholar
  23. 23.
    Mittal, K. L. (2014). Plasma surface modification of polymers: Relevance to adhesion. CRC Press.Google Scholar
  24. 24.
    Cai, Z., Qiu, Y., Zhang, C., Hwang, Y. J., & Mccord, M. (2003). Effect of atmospheric plasma treatment on desizing of PVA on cotton. Textile Research Journal, 73(8), 670–674.CrossRefGoogle Scholar
  25. 25.
    Marais, S., Gouanvé, F., Bonnesoeur, A., Grenet, J., Poncin-Epaillard, F., Morvan, C., et al. (2005). Unsaturated polyester composites reinforced with flax fibers: effect of cold plasma and autoclave treatments on mechanical and permeation properties. Composites Part A: Applied Science and Manufacturing, 36(7), 975–986.CrossRefGoogle Scholar
  26. 26.
    Sun, X., Bu, J., Liu, W., Niu, H., Qi, S., Tian, G., et al. (2017). Surface modification of polyimide fibers by oxygen plasma treatment and interfacial adhesion behavior of a polyimide fiber/epoxy composite. Science and Engineering of Composite Materials, 24(4), 477–484.CrossRefGoogle Scholar
  27. 27.
    Jovančić, P., Jocić, D., Radetić, M., Topalović, T., & Petrović, Z. L. (2005). The influence of surface modification on related functional properties of wool and hemp. Materials Science Forum, 494, 283–290.CrossRefGoogle Scholar
  28. 28.
    Wang, C. X., & Qiu, Y. P. (2007). Two sided modification of wool fabrics by atmospheric pressure plasma jet: Influence of processing parameters on plasma penetration. Surface and Coatings Technology, 201(14), 6273–6277.CrossRefGoogle Scholar
  29. 29.
    Uehara, T. (1999). Corona discharge treatment of polymers. In K. L. Mittal & A. Pizzi (Eds.), Adhesion promotion techniques (pp. 139–174). New York: Marcel Dekker.Google Scholar
  30. 30.
    Belgacem, M. N., Bataille, P., & Sapieha, S. (1994). Effect of corona modification on the mechanical properties of polypropylene/cellulose composites. Journal of Applied Polymer Science, 53(4), 379–385.CrossRefGoogle Scholar
  31. 31.
    Amirou, S., Zerizer, A., Haddadou, I., & Merlin, A. (2013). Effects of corona discharge treatment on the mechanical properties of biocomposites from polylactic acid and Algerian date palm fibres. Scientific Research and Essays, 8(21), 946–952.Google Scholar
  32. 32.
    Gassan, J., Gutowski, V. S., & Bledzki, A. K. (2000). About the surface characteristics of natural fibres. Macromolecular Materials and Engineering, 283(1), 132–139.CrossRefGoogle Scholar
  33. 33.
    Gassan, J., & Gutowski, V. S. (2000). Effects of corona discharge and UV treatment on the properties of jute-fibre epoxy composites. Composites Science and Technology, 60(15), 2857–2863.CrossRefGoogle Scholar
  34. 34.
    Dong, S., Sapieha, S., & Schreiber, H. P. (1992). Effect of corona discharge on cellulose polyethylene composites. Polymer Engineering Science, 32(22), 1737–1741.CrossRefGoogle Scholar
  35. 35.
    Bataille, P., Dufourd, M., & Sapieha, S. (1994). Copolymerization of styrene on to cellulose activated by corona. Polymer International, 34(4), 387–391.CrossRefGoogle Scholar
  36. 36.
    Willems, P. (1962). Kinematic high-frequency and ultrasonic treatment of pulp. Pulp & Paper Magazine Canada, 63, T455–T462.Google Scholar
  37. 37.
    Alam, A. M., Beg, M. D. H., Prasad, D. R., Khan, M. R., & Mina, M. F. (2012). Structures and performances of simultaneous ultrasound and alkali treated oil palm empty fruit bunch fiber reinforced poly (lactic acid) composites. Composites Part A: Applied Science and Manufacturing, 43(11), 1921–1929.CrossRefGoogle Scholar
  38. 38.
    Kadam, V. V., Goud, V., & Shakyawar, D. B. (2013). Ultrasound scouring of wool and its effects on fibre quality. Indian Journal of Fibre & Textile Research, 38, 410–414.Google Scholar
  39. 39.
    Liu, L., Huang, Y. D., Zhang, Z. Q., Jiang, Z. X., & Wu, L. N. (2008). Ultrasonic treatment of aramid fiber surface and its effect on the interface of aramid/epoxy composites. Applied Surface Science, 254(9), 2594–2599.CrossRefGoogle Scholar
  40. 40.
    Laine, J. E., & Goring, D. A. I. (1977). Influence of ultrasonic irradiation on the properties of cellulosic fibres. Cellulose Chemistry and Technology, 11(5), 561–567.Google Scholar
  41. 41.
    Kato, K., Vasilets, V. N., Fursa, M. N., Meguro, M., Ikada, Y., & Nakamae, K. (1999). Surface oxidation of cellulose fibers by vacuum ultraviolet irradiation. Journal of Polymer Science Part A: Polymer Chemistry, 37(3), 357–361.CrossRefGoogle Scholar
  42. 42.
    Benedetto, R. M. D., Gelfuso, M. V., & Thomazini, D. (2015). Influence of UV radiation on the physical-chemical and mechanical properties of banana fiber. Materials Research, 18, 265–272.CrossRefGoogle Scholar
  43. 43.
    Oosterom, R., Ahmed, T. J., Poulis, J. A., & Bersee, H. E. N. (2006). Adhesion performance of UHMWPE after different surface modification techniques. Medical Engineering & Physics, 28(4), 323–330.CrossRefGoogle Scholar
  44. 44.
    Benyahia, A., Merrouche, A., Rokbi, M., & Kouadri, Z. (2013). Study the effect of alkali treatment of natural fibers on the mechanical behavior of the composite unsaturated Polyester-fiber Alfa. 21ème Congrès Français de Mécanique Bordeaux (pp. 1–6).Google Scholar
  45. 45.
    Li, X., Tabil, L. G., & Panigrahi, S. (2007). Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment, 15(1), 25–33.CrossRefGoogle Scholar
  46. 46.
    Verma, A., Gaur, A., & Singh, V. K. (2017). Mechanical properties and microstructure of starch and sisal fiber biocomposite modified with epoxy resin. Materials Performance and Characterization, 6(1), 500–520.CrossRefGoogle Scholar
  47. 47.
    Verma, A., & Singh, V. K. (2019). Mechanical, microstructural and thermal characterization of epoxy-based human hair-reinforced composites. Journal of Testing and Evaluation, 47(2), 1193–1215.CrossRefGoogle Scholar
  48. 48.
    Verma, A., Negi, P., & Singh, V. K. (2019). Experimental analysis on carbon residuum transformed epoxy resin: Chicken feather fiber hybrid composite. Polymer Composites, 40(7), 2690–2699.CrossRefGoogle Scholar
  49. 49.
    Verma, A., Negi, P., & Singh, V. K. (2018). Physical and thermal characterization of chicken feather fiber and crumb rubber reformed epoxy resin hybrid composite. Advances in Civil Engineering Materials, 7(1), 538–557.CrossRefGoogle Scholar
  50. 50.
    Verma, A., Negi, P., & Singh, V. K. (2018). Experimental investigation of chicken feather fiber and crumb rubber reformed epoxy resin hybrid composite: mechanical and microstructural characterization. Journal of the Mechanical Behavior of Materials, 27(3–4), 1–24.Google Scholar
  51. 51.
    Verma, A., Joshi, K., Gaur, A., & Singh, V. K. (2018). Starch-jute fiber hybrid biocomposite modified with an epoxy resin coating: Fabrication and experimental characterization. Journal of the Mechanical Behavior of Materials, 27(5–6), 1–16.Google Scholar
  52. 52.
    Verma, A., Budiyal, L., Sanjay, M. R., & Siengchin, S. (2019). Processing and characterization analysis of pyrolyzed oil rubber (from waste tires)-epoxy polymer blend composite for lightweight structures and coatings applications. Polymer Engineering & Science, 59(10), 2041–2051.CrossRefGoogle Scholar
  53. 53.
    Verma, A., Kumar, R., & Parashar, A. (2019). Enhanced thermal transport across a bi-crystalline graphene–polymer interface: An atomistic approach. Physical Chemistry Chemical Physics, 21, 6229–6237.CrossRefGoogle Scholar
  54. 54.
    Mohanty, A. K., Misra, M., & Drzal, L. T. (2001). Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Composite Interfaces, 8(5), 313–343.CrossRefGoogle Scholar
  55. 55.
    Jähn, A., Schröder, M. W., Füting, M., Schenzel, K., & Diepenbrock, W. (2002). Characterization of alkali treated flax fibres by means of FT Raman spectroscopy and environmental scanning electron microscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 58(10), 2271–2279.CrossRefGoogle Scholar
  56. 56.
    Agrawal, R., Saxena, N. S., Sharma, K. B., Thomas, S., & Sreekala, M. S. (2000). Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites. Materials Science and Engineering: A, 277(1–2), 77–82.CrossRefGoogle Scholar
  57. 57.
    Cai, M., Takagi, H., Nakagaito, A. N., Li, Y., & Waterhouse, G. I. (2016). Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, 90, 589–597.CrossRefGoogle Scholar
  58. 58.
    Wei, B., Cao, H., & Song, S. (2010). Tensile behavior contrast of basalt and glass fibers after chemical treatment. Materials & Design, 31(9), 4244–4250.CrossRefGoogle Scholar
  59. 59.
    Garcia-Jaldon, C., Dupeyre, D., & Vignon, M. R. (1998). Fibres from semi-retted hemp bundles by steam explosion treatment. Biomass and Bioenergy, 14(3), 251–260.CrossRefGoogle Scholar
  60. 60.
    Morrison Iii, W. H., Archibald, D. D., Sharma, H. S. S., & Akin, D. E. (2000). Chemical and physical characterization of water-and dew-retted flax fibers. Industrial Crops and Products, 12(1), 39–46.CrossRefGoogle Scholar
  61. 61.
    Mishra, S., Misra, M., Tripathy, S. S., Nayak, S. K., & Mohanty, A. K. (2001). Graft copolymerization of acrylonitrile on chemically modified sisal fibers. Macromolecular Materials and Engineering, 286(2), 107–113.CrossRefGoogle Scholar
  62. 62.
    Ray, D., Sarkar, B. K., Rana, A. K., & Bose, N. R. (2001). Effect of alkali treated jute fibres on composite properties. Bulletin of Materials Science, 24(2), 129–135.CrossRefGoogle Scholar
  63. 63.
    Bachtiar, D., Sapuan, S. M., & Hamdan, M. M. (2010). Flexural properties of alkaline treated sugar palm fibre reinforced epoxy composites. International Journal of Automotive and Mechanical Engineering, 1(1), 79–90.CrossRefGoogle Scholar
  64. 64.
    Yan, L., Chouw, N., Huang, L., & Kasal, B. (2016). Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Construction and Building Materials, 112, 168–182.CrossRefGoogle Scholar
  65. 65.
    Hosur, M., Maroju, H., & Jeelani, S. (2015). Comparison of effects of alkali treatment on flax fibre reinforced polyester and polyester-biopolymer blend resins. Polymers and Polymer Composites, 23(4), 229–242.CrossRefGoogle Scholar
  66. 66.
    Van de Weyenberg, I., Ivens, J., De Coster, A., Kino, B., Baetens, E., & Verpoest, I. (2003). Influence of processing and chemical treatment of flax fibres on their composites. Composites Science and Technology, 63(9), 1241–1246.CrossRefGoogle Scholar
  67. 67.
    Jacob, M., Thomas, S., & Varughese, K. T. (2004). Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Composites Science and Technology, 64(7–8), 955–965.CrossRefGoogle Scholar
  68. 68.
    Sang, L., Zhao, M., Liang, Q., & Wei, Z. (2017). Silane-treated basalt fiber-reinforced poly (butylene succinate) biocomposites: Interfacial crystallization and tensile properties. Polymers, 9(8), 351.CrossRefGoogle Scholar
  69. 69.
    Tan, C., Ahmad, I., & Heng, M. (2011). Characterization of polyester composites from recycled polyethylene terephthalate reinforced with empty fruit bunch fibers. Materials & Design, 32(8–9), 4493–4501.CrossRefGoogle Scholar
  70. 70.
    Rong, M. Z., Zhang, M. Q., Liu, Y., Yang, G. C., & Zeng, H. M. (2001). The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Composites Science and technology, 61(10), 1437–1447.CrossRefGoogle Scholar
  71. 71.
    Valadez-Gonzalez, A., Cervantes-Uc, J. M., Olayo, R., & Herrera-Franco, P. J. (1999). Chemical modification of henequen fibers with an organosilane coupling agent. Composites Part B: Engineering, 30(3), 321–331.CrossRefGoogle Scholar
  72. 72.
    Hill, C. A., Khalil, H. A., & Hale, M. D. (1998). A study of the potential of acetylation to improve the properties of plant fibres. Industrial Crops and Products, 8(1), 53–63.CrossRefGoogle Scholar
  73. 73.
    Bledzki, A. K., Mamun, A. A., Lucka-Gabor, M., & Gutowski, V. S. (2008). The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polymer Letters, 2(6), 413–422.CrossRefGoogle Scholar
  74. 74.
    Mishra, S., Mohanty, A. K., Drzal, L. T., Misra, M., Parija, S., Nayak, S. K., et al. (2003). Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Composites Science and Technology, 63(10), 1377–1385.CrossRefGoogle Scholar
  75. 75.
    Khalil, H. A., & Ismail, H. (2000). Effect of acetylation and coupling agent treatments upon biological degradation of plant fibre reinforced polyester composites. Polymer Testing, 20(1), 65–75.CrossRefGoogle Scholar
  76. 76.
    Kalia, S., Kaith, B. S., & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polymer Engineering & Science, 49(7), 1253–1272.CrossRefGoogle Scholar
  77. 77.
    Nair, K. M., Thomas, S., & Groeninckx, G. (2001). Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Composites Science and Technology, 61(16), 2519–2529.CrossRefGoogle Scholar
  78. 78.
    Kalia, S., Kaushik, V. K., & Sharma, R. K. (2011). Effect of benzoylation and graft copolymerization on morphology, thermal stability, and crystallinity of sisal fibers. Journal of Natural Fibers, 8(1), 27–38.CrossRefGoogle Scholar
  79. 79.
    Bledzki, A. K., & Gassan, J. (1999). Composites reinforced with cellulose based fibres. Progress in Polymer Science, 24(2), 221–274.CrossRefGoogle Scholar
  80. 80.
    Singha, A. S., & Rana, R. K. (2012). Functionalization of cellulosic fibers by graft copolymerization of acrylonitrile and ethyl acrylate from their binary mixtures. Carbohydrate Polymers, 87(1), 500–511.CrossRefGoogle Scholar
  81. 81.
    Sreekala, M. S., Kumaran, M. G., & Thomas, S. (2002). Water sorption in oil palm fiber reinforced phenol formaldehyde composites. Composites Part A: Applied Science and Manufacturing, 33(6), 763–777.CrossRefGoogle Scholar
  82. 82.
    Mishra, S., Mishra, M., Tripathy, S. S., Nayak, S. K., & Mohanty, A. K. (2002). The influence of chemical surface modification on the performance of sisal-polyester biocomposites. Polymer Composites, 23(2), 164–170.CrossRefGoogle Scholar
  83. 83.
    Li, X., Panigrahi, S. A., Tabil, L. G., & Crerar, W. J. (2004). Flax fiber-reinforced composites and the effect of chemical treatments on their properties. In North central ASAE/CSAE Annual Intersectional Meeting, Winnipeg, Canada.Google Scholar
  84. 84.
    Van de Velde, K., & Kiekens, P. (2003). Effect of material and process parameters on the mechanical properties of unidirectional and multidirectional flax/polypropylene composites. Composite Structures, 62(3–4), 443–448.CrossRefGoogle Scholar
  85. 85.
    Cantero, G., Arbelaiz, A., Llano-Ponte, R., & Mondragon, I. (2003). Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Composites Science and Technology, 63(9), 1247–1254.CrossRefGoogle Scholar
  86. 86.
    Keener, T. J., Stuart, R. K., & Brown, T. K. (2004). Maleated coupling agents for natural fibre composites. Composites Part A: Applied Science and Manufacturing, 35(3), 357–362.CrossRefGoogle Scholar
  87. 87.
    Gassan, J., & Bledzki, A. K. (1997). The influence of fiber-surface treatment on the mechanical properties of jute-polypropylene composites. Composites Part A: Applied Science and Manufacturing, 28(12), 1001–1005.CrossRefGoogle Scholar
  88. 88.
    Van den Oever, M., & Peijs, T. (1998). Continuous-glass-fibre-reinforced polypropylene composites II. Influence of maleic-anhydride modified polypropylene on fatigue behaviour. Composites Part A: Applied Science and Manufacturing, 29(3), 227–239.Google Scholar
  89. 89.
    Joseph, P. V., Joseph, K., Thomas, S., Pillai, C. K. S., Prasad, V. S., Groeninckx, G., et al. (2003). The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 34(3), 253–266.CrossRefGoogle Scholar
  90. 90.
    Bledzki, A. K., Reihmane, S., & Gassan, J. (1996). Properties and modification methods for vegetable fibers for natural fiber composites. Journal of Applied Polymer Science, 59(8), 1329–1336.CrossRefGoogle Scholar
  91. 91.
    Mohanty, S., Nayak, S. K., Verma, S. K., & Tripathy, S. S. (2004). Effect of MAPP as a coupling agent on the performance of jute–PP composites. Journal of Reinforced Plastics and Composites, 23(6), 625–637.CrossRefGoogle Scholar
  92. 92.
    Mishra, S., Naik, J. B., & Patil, Y. P. (2000). The compatibilising effect of maleic anhydride on swelling and mechanical properties of plant-fiber-reinforced novolac composites. Composites Science and Technology, 60(9), 1729–1735.CrossRefGoogle Scholar
  93. 93.
    Frederick, T. W., & Norman, W. (2004). Natural fibers plastics and composites. New York: EUA: Kluwer Academic Publishers.Google Scholar
  94. 94.
    Paul, A., Joseph, K., & Thomas, S. (1997). Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Composites Science and Technology, 57(1), 67–79.CrossRefGoogle Scholar
  95. 95.
    Khan, J. A., Khan, M. A., & Islam, R. (2012). Effect of potassium permanganate on mechanical, thermal and degradation characteristics of jute fabric-reinforced polypropylene composite. Journal of Reinforced Plastics and Composites, 31(24), 1725–1736.CrossRefGoogle Scholar
  96. 96.
    Arsyad, M., & Soenoko, R. (2018). The effects of sodium hydroxide and potassium permanganate treatment on roughness of coconut fiber surface. In MATEC Web of Conferences (EDP Sciences), 204, 05004.Google Scholar
  97. 97.
    Sreekala, M. S., Kumaran, M. G., Joseph, S., Jacob, M., & Thomas, S. (2000). Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance. Applied Composite Materials, 7(5–6), 295–329.CrossRefGoogle Scholar
  98. 98.
    Joseph, K., Thomas, S., & Pavithran, C. (1996). Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer, 37(23), 5139–5149.CrossRefGoogle Scholar
  99. 99.
    Sreekala, M. S., & Thomas, S. (2003). Effect of fibre surface modification on water-sorption characteristics of oil palm fibres. Composites Science and Technology, 63(6), 861–869.CrossRefGoogle Scholar
  100. 100.
    Wu, Z., Pittman, C. U., Jr., & Gardner, S. D. (1996). Grafting isocyanate-terminated elastomers onto the surfaces of carbon fibers: Reaction of isocyanate with acidic surface functions. Carbon, 34(1), 59–67.CrossRefGoogle Scholar
  101. 101.
    George, J., Janardhan, R., Anand, J. S., Bhagawan, S. S., & Thomas, S. (1996). Melt rheological behaviour of short pineapple fibre reinforced low density polyethylene composites. Polymer, 37(24), 5421–5431.CrossRefGoogle Scholar
  102. 102.
    Zafeiropoulos, N. E., Williams, D. R., Baillie, C. A., & Matthews, F. L. (2002). Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments. Composites Part A: Applied Science and Manufacturing,  33(8), 1083–1093.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Akarsh Verma
    • 1
    Email author
  • Avinash Parashar
    • 1
  • Naman Jain
    • 2
  • V. K. Singh
    • 2
  • Sanjay Mavinkere Rangappa
    • 3
  • Suchart Siengchin
    • 3
  1. 1.Department of Mechanical and Industrial EngineeringIndian Institute of TechnologyRoorkeeIndia
  2. 2.Department of Mechanical EngineeringG. B. Pant University of Agriculture and TechnologyPantnagarIndia
  3. 3.Department of Mechanical and Process EngineeringThe Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North BangkokBangkokThailand

Personalised recommendations