Fast Gates

  • Vera M. SchäferEmail author
Part of the Springer Theses book series (Springer Theses)


Off-resonant excitation: For shorter gate pulses errors due to off-resonant excitation increase. The sharp edges of the pulse have a broad frequency spectrum. These different frequency components can drive the second motional mode, higher orders and counter-rotating modes of the main motional mode and will cause an AC Stark shift coupling to the carrier depending on the un-stabilised relative phase of the Raman beams \(\phi _0\). Shaping the edge of the pulse on the timescale of a few motional periods of the ion’s motion reduces the pulse bandwidth and strongly suppresses errors due to off-resonant excitation [1]. However this method starts to fail once the total gate length is on the same order of magnitude as the ideal pulse shaping length.


  1. 1.
    Ballance CJ (2014) High-fidelity quantum logic in Ca\(^+\) PhD thesis, University of OxfordGoogle Scholar
  2. 2.
    Schäfer VM et al (2017) Fast quantum logic gates with trapped-ion qubits. Nature 555:75–78. ISSN: 0028-0836Google Scholar
  3. 3.
    Leibfried D et al (2003) Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422:412–415. ISSN: 0028-0836Google Scholar
  4. 4.
    Gaebler JP et al (2016) High-fidelity universal gate set for \(^\text{9}\)Be\(^+\) ion qubits. Phys Rev Lett 117:060505. ISSN: 10797114Google Scholar
  5. 5.
    Degenhardt C et al (2005) Influence of chirped excitation pulses in an optical clock with ultracold calcium atoms. IEEE Trans Instrum Meas 54:771–775. ISSN: 00189456Google Scholar
  6. 6.
    Steane AM, Imreh G, Home JP Leibfried D (2014) Pulsed force sequences for fast phase-insensitive quantum gates in trapped ions. New J Phys 16. ISSN: 13672630Google Scholar
  7. 7.
    Woodrow SR (2015) Linear Paul trap design for high-fidelity, scalable quantum information processing Master’s thesis, University of OxfordGoogle Scholar
  8. 8.
    Ballance CJ, Harty TP, Linke NM, Sepiol MA, Lucas DM (2016) High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys Rev Lett 117:060504. ISSN: 10797114Google Scholar
  9. 9.
    Raussendorf R, Harrington J (2007) Fault-tolerant quantum computation with high threshold in two dimensions. Phys Rev Lett 98:190504. ISSN: 00319007Google Scholar
  10. 10.
    Lin Y et al (2013) Sympathetic electromagnetically-induced-transparency laser cooling of motional modes in an ion chain. Phys Rev Lett 110:153002. ISSN: 00319007Google Scholar
  11. 11.
    Noek R et al (2013) High speed, high fidelity detection of an atomic hyperfine qubit. Opt Lett 38:4735–4738. ISSN: 0146-9592Google Scholar
  12. 12.
    Hughes A (2017) A new readout method for \(^\text{43 }\)Ca\(^+\) qubits tech. rep. August, University of OxfordGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Clarendon Laboratory, Department of PhysicsUniversity of OxfordOxfordUK

Personalised recommendations