Advertisement

Fast Gates

  • Vera M. SchäferEmail author
Chapter
  • 18 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Off-resonant excitation: For shorter gate pulses errors due to off-resonant excitation increase. The sharp edges of the pulse have a broad frequency spectrum. These different frequency components can drive the second motional mode, higher orders and counter-rotating modes of the main motional mode and will cause an AC Stark shift coupling to the carrier depending on the un-stabilised relative phase of the Raman beams \(\phi _0\). Shaping the edge of the pulse on the timescale of a few motional periods of the ion’s motion reduces the pulse bandwidth and strongly suppresses errors due to off-resonant excitation [1]. However this method starts to fail once the total gate length is on the same order of magnitude as the ideal pulse shaping length.

References

  1. 1.
    Ballance CJ (2014) High-fidelity quantum logic in Ca\(^+\) PhD thesis, University of OxfordGoogle Scholar
  2. 2.
    Schäfer VM et al (2017) Fast quantum logic gates with trapped-ion qubits. Nature 555:75–78. ISSN: 0028-0836Google Scholar
  3. 3.
    Leibfried D et al (2003) Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422:412–415. ISSN: 0028-0836Google Scholar
  4. 4.
    Gaebler JP et al (2016) High-fidelity universal gate set for \(^\text{9}\)Be\(^+\) ion qubits. Phys Rev Lett 117:060505. ISSN: 10797114Google Scholar
  5. 5.
    Degenhardt C et al (2005) Influence of chirped excitation pulses in an optical clock with ultracold calcium atoms. IEEE Trans Instrum Meas 54:771–775. ISSN: 00189456Google Scholar
  6. 6.
    Steane AM, Imreh G, Home JP Leibfried D (2014) Pulsed force sequences for fast phase-insensitive quantum gates in trapped ions. New J Phys 16. ISSN: 13672630Google Scholar
  7. 7.
    Woodrow SR (2015) Linear Paul trap design for high-fidelity, scalable quantum information processing Master’s thesis, University of OxfordGoogle Scholar
  8. 8.
    Ballance CJ, Harty TP, Linke NM, Sepiol MA, Lucas DM (2016) High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys Rev Lett 117:060504. ISSN: 10797114Google Scholar
  9. 9.
    Raussendorf R, Harrington J (2007) Fault-tolerant quantum computation with high threshold in two dimensions. Phys Rev Lett 98:190504. ISSN: 00319007Google Scholar
  10. 10.
    Lin Y et al (2013) Sympathetic electromagnetically-induced-transparency laser cooling of motional modes in an ion chain. Phys Rev Lett 110:153002. ISSN: 00319007Google Scholar
  11. 11.
    Noek R et al (2013) High speed, high fidelity detection of an atomic hyperfine qubit. Opt Lett 38:4735–4738. ISSN: 0146-9592Google Scholar
  12. 12.
    Hughes A (2017) A new readout method for \(^\text{43 }\)Ca\(^+\) qubits tech. rep. August, University of OxfordGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Clarendon Laboratory, Department of PhysicsUniversity of OxfordOxfordUK

Personalised recommendations