Introducing Model-Based Instruction for SSI Teaching in Primary Pre-service Teacher Education

  • Anna Garrido Espeja
  • Digna Couso
Part of the Contemporary Trends and Issues in Science Education book series (CTISE, volume 52)


In the present study, we designed and implemented a research-based initial training for primary-school teachers from the scientific practices framework. The aim is to help teachers understand what Socio-Scientific Issues (SSI) are and to be able to teach them, in addition to helping pupils learn key scientific ideas. Under the constant guidance and support of teacher educators, three pre-service teachers (PTs) designed and implemented SSI lesson plans in primary schools, and reflected on the process. Results show that the SSI context facilitates the development of more innovative lesson plans, as PTs’ final lesson plans improved from initial designs in several aspects (i.e. the problematization of the topic, inclusion of scientific content, or the use of formative assessment). Pre-service teachers were able to teach successful SSI lessons and they were aware of their learning process throughout the training, although important challenges arose during the design and implementation of the SSI activities. The most relevant were the difficulties of including scientific content and the difficulty to have a balanced dialogic role in a manner that was sufficiently but not too guided. Above all, PTs were able to critically reflect on their teaching practices and think of new and mature ways to overcome these important challenges, resulting in important professional development during their initial training in SSI.


Socio-scientific issues Pre-service teachers Primary school Scientific practices School scientific models Key scientific ideas 


  1. Adúriz-Bravo, A. (2008). Un modelo de ciencia para el análisis epistemológico de la didáctica de las ciencias naturales. Perspectivas Educativas, 1, 13–39.Google Scholar
  2. Adúriz-Bravo, A., Bonan, L., Galli, L. G., Chion, A. R., & Meinardi, E. (2005). Scientific argumentation in pre-service biology teacher education. Eurasia Journal of Mathematics, Science and Technology Education, 1(1), 76–83.CrossRefGoogle Scholar
  3. Albe, V. (2008). Students’ positions and considerations of scientific evidence about a controversial socioscientific issue. Science & Education, 17(8–9), 805–827.CrossRefGoogle Scholar
  4. Andriessen, J. (2006). Arguing to learn. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 443–459). Cambridge: Cambridge University Press.Google Scholar
  5. Avraamidou, L., & Zembal-Saul, C. (2010). In search of well-started beginning science teachers: Insights from two first-year elementary teachers. Journal of Research in Science Teaching, 47(6), 661–686.CrossRefGoogle Scholar
  6. Berland, L. K., & Reiser, B. J. (2011). Classroom communities’ adaptations of the practice of scientific argumentation. Science Education, 95, 191–216.CrossRefGoogle Scholar
  7. Dawson, V. M., & Venville, G. (2010). Teaching strategies for developing students’ argumentation skills about Socioscientific issues in high school genetics. Research in Science Education, 40(2), 133–148.CrossRefGoogle Scholar
  8. Díaz-Moreno, N., & Jiménez-liso, M. R. (2012). Las controversias sociocientíficas : temáticas e importancia para la educación científica. Eureka, 9(1), 54–70.CrossRefGoogle Scholar
  9. Dolan, T. J., Nichols, B. H., & Zeidler, D. L. (2009). Using socioscientific issues in primary classrooms. Journal of Elementary Science Education, 21(3), 1–12.CrossRefGoogle Scholar
  10. Domènech, A. M., & Márquez, C. (2012). Students’ opinions about a SSI: Perspectives refered in their arguments about bears’ reintroduction. In C. Bruguière, A. Tiberghien, & P. Clément (Eds.), E-book proceedings of the ESERA 2011 conference (pp. 31–38). France: Lyon.Google Scholar
  11. Duschl, R. A., & Grandy, R. E. (2008). Teaching scientific inquiry: Recommendations for research and implementation. Rotterdam: Sense Publishers.CrossRefGoogle Scholar
  12. Erduran, S., & Jiménez-Aleixandre, M. P. (2007). Argumentation in science education. Perspectives from classroom-based research. New York: Springer.Google Scholar
  13. Evagorou, M., Jiménez-aleixandre, M. P., & Osborne, J. (2012). “Should we kill the Grey squirrels?” a study exploring students’ justifications and decision-making. International Journal of Science Education, 34(3), 401–428.CrossRefGoogle Scholar
  14. Evagorou, M., Albe, V., Angelides, P., Couso, D., Chirlesan, G., Evans, R., et al. (2014). Preparing pre-service science teachers to teach socio-scientific (SSI) argumentation. Science Teacher Education, 69, 39–47.Google Scholar
  15. Garrido, A., & Couso, D. (2015). Socio-scientific issues (SSI) in initial training of primary school teachers: Pre-service teachers’ conceptualization of SSI and appreciation of the value of teaching SSI. Procedia – Social and Behavioral Sciences, 196, 80–88.CrossRefGoogle Scholar
  16. Garrido Espeja, A., & Couso Lagarón, D. (2014). Les controvèrsies socio-científiques (SSI) en la formació inicial de mestres de primària: Anàlisi de l’aprenentatge, l’auto-eficàcia i l’aplicació real a l’aula. In Special issue for the VIII international conference on university teaching and innovation CIDUI 2014 (Vol. 2. pp. 1–10).Google Scholar
  17. Harlen, W. (2010). Principles and big ideas of science education. Hants: Gosport.Google Scholar
  18. Iordanou, K., & Constantinou, C. P. (2014). Developing pre-service teachers ’ evidence-based argumentation skills on socio-scientific issues. Learning and Instruction, 34, 42–57.CrossRefGoogle Scholar
  19. Izquierdo, M., Espinet, M., García, M. P., Pujol, R. M., & Sanmartí, N. (1999). Caracterización y fundamentación de la ciencia escolar. Enseñanza de Las Ciencias.Google Scholar
  20. Jiménez-Aleixandre, M. P. (2010). 10 ideas clave. Competencias en argumentación y uso de pruebas. Barcelona: GRAO.Google Scholar
  21. Jiménez-Aleixandre, M. P., Bugallo Rodríguez, A., & Duschl, R. A. (2000). “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84(6), 757–792.CrossRefGoogle Scholar
  22. Jiménez-Aleixandre, M. P., Caamaño, A., Oñorbe, A., Pedrinaci, E., & de Pro, A. (2003). Enseñar ciencias. Barcelona: GRAO.Google Scholar
  23. Kolsto, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85(1), 291–310.CrossRefGoogle Scholar
  24. Martínez Chico, M., López-Gay Lucio-Villegas, R., & Jiménez Liso, M. R. (2014). ¿Es posible diseñar un programa formativo para enseñar ciencias por Indagación basada en Modelos en la formación inicial de maestros? Fundamentos, exigencias y aplicación. Didáctica de Las Ciencias Experimentales Y Sociales, 4379(28), 153–173.Google Scholar
  25. Michaels, S., Shouse, A. W., & Schweingruber, H. A. (2008). Ready, set, science! Washington, DC: The National Academies Press.Google Scholar
  26. Mortimer, E. F., & Scott, P. H. (2003). Meaning making in secondary science classrooms (McGraw-Hill Education, Ed.). Maidenhead: Open University Press.Google Scholar
  27. NGSS Lead States. (2013). Next generation science standards: For States, by States. Washington, DC: National Academies PressGoogle Scholar
  28. Nielsen, J. A. (2012). Science in discussions: An analysis of the use of science content in socioscientific discussions. Science Education, 96(3), 428–456.CrossRefGoogle Scholar
  29. NRC. (2007). Taking science to school: Learning and teaching science in grades K-8. Board on Science Education, Center for Education. Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.Google Scholar
  30. NRC. (2012). A framework for K-12 science education. Practices, crosscutting concepts and core ideas. Washington, DC: The National Academies Press.Google Scholar
  31. Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328, 463–466.CrossRefGoogle Scholar
  32. Osborne, J. (2014). Teaching scientific practices: Meeting the challenge of change. Journal of Science Teacher Education, 25(2), 177–196.CrossRefGoogle Scholar
  33. Osborne, J., & Dillon, J. (2008). Science education in Europe: Critical reflections. London: Nuffield Foundation.Google Scholar
  34. Passmore, C. M., & Svoboda, J. (2012). Exploring opportunities for argumentation in modelling classrooms. International Journal of Science Education, 34(10), 1535–1554.CrossRefGoogle Scholar
  35. Reiser, B. J. (2013). What professional development strategies are needed for successful implementation of the next generation science standards? Invitational Research Symposium on Science Assessment.Google Scholar
  36. Ryu, S., & Sandoval, W. A. (2012). Improvements to elementary children’s epistemic understanding from sustained argumentation. Science Education, 96(3), 488–526.CrossRefGoogle Scholar
  37. Sadler, T. D., & Fowler, S. R. (2006). A threshold model of content knowledge transfer for socioscientific argumentation. Science Education, 90, 986–1004. Scholar
  38. Sadler, T. D., & Zeidler, D. L. (2005). The significance of content knowledge for informal reasoning regarding socioscientific issues: Applying genetics knowledge to genetic engineering issues. Science Education, 89(1), 71–93.CrossRefGoogle Scholar
  39. Sadler, T. D., & Zeidler, D. L. (2009). Scientific literacy, PISA, and socioscientific discourse: Assessment for progressive aims of science education. Journal of Research in Science Teaching, 46(8), 909–921.CrossRefGoogle Scholar
  40. Sadler, T. D., Romine, W. L., & Topçu, M. S. (2016). Learning science content through socio-scientific issues-based instruction: A multi-level assessment study. International Journal of Science Education, 38(10), 1622–1635.CrossRefGoogle Scholar
  41. Sanmartí, N. (2003). Aprendre ciències tot aprenent a escriure ciencia (Edicions 62, Ed.). Barcelona.Google Scholar
  42. Shulman, L. S. (1986). Paradigms and research programs in the study of teaching: A contemporary perspective. In M. C. Wittrock (Ed.), Third handbook of research on teaching. New York: Macmillan.Google Scholar
  43. Wu, Y. T., & Tsai, C. C. (2011). High school students’ informal reasoning regarding a socio-scientific issue, with relation to scientific epistemological beliefs and cognitive structures. International Journal of Science Education, 33(3), 371–400.CrossRefGoogle Scholar
  44. Zeidler, D. L., & Nichols, B. H. (2009). Socioscientific issues: Theory and practice. Journal of Elementary Science Education, 21(2), 49–58.CrossRefGoogle Scholar
  45. Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research-based framework for socioscientific issues education. Science Education, 89(3), 357–377.CrossRefGoogle Scholar
  46. Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35–62.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Anna Garrido Espeja
    • 1
  • Digna Couso
    • 1
    • 2
  1. 1.CRECIMBarcelonaSpain
  2. 2.Department Didàctica de les Matemàtiques i les Ciències ExperimentalsUniversitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations