Advertisement

Cut-and-Choose for Garbled RAM

  • Peihan MiaoEmail author
Conference paper
  • 16 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12006)

Abstract

Garbled RAM, introduced by Lu and Ostrovsky in 2013, provides a novel method for secure computation on RAM (Random Access Machine) programs directly. It can be seen as a RAM analogue of Yao’s garbled circuits such that the computational complexity and communication complexity only grow with the running time of the RAM program, avoiding the inefficient process of first converting it into a circuit. It allows for executing multiple RAM programs on a persistent database, but is secure only against semi-honest adversaries.

In this work we provide a cut-and-choose technique for garbled RAM. This gives the first constant-round two-party RAM computation protocol secure against malicious adversaries which allows for multiple RAM programs being executed on a persistent database. Our protocol makes black-box use of the one-way functions, and security of our construction is argued in the random oracle model.

Notes

Acknowledgements

The author would like to thank Sanjam Garg for many insightful discussions and helpful comments on the write-up.

References

  1. [AHMR15]
    Afshar, A., Hu, Z., Mohassel, P., Rosulek, M.: How to efficiently evaluate RAM programs with malicious security. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 702–729. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46800-5_27CrossRefGoogle Scholar
  2. [Bea96]
    Beaver, D.: Correlated pseudorandomness and the complexity of private computations. In: 28th ACM STOC (1996)Google Scholar
  3. [BFM88]
    Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: STOC, pp. 103–112 (1988)Google Scholar
  4. [BHR12a]
    Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applications to one-time programs and secure outsourcing. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_10CrossRefGoogle Scholar
  5. [BHR12b]
    Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: ACM CCS (2012)Google Scholar
  6. [BMR90]
    Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: 22nd ACM STOC (1990)Google Scholar
  7. [BR93]
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: ACM CCS 1993 (1993)Google Scholar
  8. [DMN11]
    Damgård, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM without random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_10CrossRefGoogle Scholar
  9. [FJN+13]
    Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: MiniLEGO: efficient secure two-party computation from general assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 537–556. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_32CrossRefGoogle Scholar
  10. [FJNT15]
    Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., and Trifiletti, R.: TinyLEGO: an interactive garbling scheme for maliciously secure two-party computation. Cryptology ePrint Archive, Report 2015/309 (2015). http://eprint.iacr.org/2015/309
  11. [FLS99]
    Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)MathSciNetCrossRefGoogle Scholar
  12. [GGMP16]
    Garg, S., Gupta, D., Miao, P., Pandey, O.: Secure multiparty RAM computation in constant rounds. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol. 9985, pp. 491–520. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53641-4_19CrossRefGoogle Scholar
  13. [GHL+14]
    Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_23CrossRefGoogle Scholar
  14. [GKK+12]
    Gordon, S.D., et al.: Secure two-party computation in sublinear (amortized) time. In: CCS (2012)Google Scholar
  15. [GLO15]
    Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM. In: 56th FOCS (2015)Google Scholar
  16. [GLOS15]
    Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way functions. In: 47th ACM STOC (2015)Google Scholar
  17. [GLOV12]
    Goyal, V., Lee, C.-K., Ostrovsky, R., Visconti, I.: Constructing non-malleable commitments: a black-box approach. In: 53rd FOCS (2012)Google Scholar
  18. [GMW87]
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: 19th ACM STOC (1987)Google Scholar
  19. [GO96]
    Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious RAMs. J. ACM 43(3), 431–473 (1996)MathSciNetCrossRefGoogle Scholar
  20. [Gol87]
    Goldreich, O.: Towards a theory of software protection and simulation by oblivious RAMs. In: 19th ACM STOC (1987)Google Scholar
  21. [GOS06]
    Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006).  https://doi.org/10.1007/11761679_21CrossRefGoogle Scholar
  22. [GOSV14]
    Goyal, V., Ostrovsky, R., Scafuro, A., Visconti, I.: Black-box non-black-box zero knowledge. In: 46th ACM STOC (2014)Google Scholar
  23. [HY16]
    Hazay, C., Yanai, A.: Constant-round maliciously secure two-party computation in the RAM model. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol. 9985, pp. 521–553. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53641-4_20CrossRefGoogle Scholar
  24. [IKLP06]
    Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for secure computation. In: 38th ACM STOC (2006)Google Scholar
  25. [IKNP03]
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_9CrossRefGoogle Scholar
  26. [IR89]
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: 21st ACM STOC (1989)Google Scholar
  27. [IR90]
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26. Springer, New York (1990).  https://doi.org/10.1007/0-387-34799-2_2CrossRefGoogle Scholar
  28. [KMR14]
    Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling for XOR gates that beats free-XOR. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 440–457. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44381-1_25CrossRefGoogle Scholar
  29. [KS08]
    Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70583-3_40CrossRefzbMATHGoogle Scholar
  30. [LO13a]
    Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 377–396. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36594-2_22CrossRefGoogle Scholar
  31. [LO13b]
    Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_42CrossRefGoogle Scholar
  32. [LP07]
    Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72540-4_4CrossRefzbMATHGoogle Scholar
  33. [Mia16]
    Miao, P.: Cut-and-choose for garbled ram. IACR Cryptology ePrint Archive 2016:907 (2016)Google Scholar
  34. [MNP+04]
    Malkhi, D., Nisan, N., Pinkas, B., Sella, Y., et al.: Fairplay–secure two-party computation system. In: USENIX Security Symposium, vol. 4. San Diego (2004)Google Scholar
  35. [NO09]
    Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00457-5_22CrossRefGoogle Scholar
  36. [NPS99]
    Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: Proceedings of the 1st ACM conference on Electronic commerce, pp. 129–139. ACM (1999)Google Scholar
  37. [OS97]
    Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In: 29th ACM STOC (1997)Google Scholar
  38. [Ost90]
    Ostrovsky, R.: Efficient computation on oblivious RAMs. In: 22nd ACM STOC (1990)Google Scholar
  39. [PSSW09]
    Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10366-7_15CrossRefGoogle Scholar
  40. [PW09]
    Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00457-5_24CrossRefzbMATHGoogle Scholar
  41. [SCSL11]
    Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3) worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 197–214. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25385-0_11CrossRefGoogle Scholar
  42. [SvDS+13]
    Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM protocol. In: ACM CCS 13 (2013)Google Scholar
  43. [Wee10]
    Wee, W.: Black-box, round-efficient secure computation via non-malleability amplification. In: 51st FOCS (2010)Google Scholar
  44. [WHC+14]
    Wang, X.S., Huang, Y., Chan, T.-H.H., Shelat, A., Shi, E.: SCORAM: Oblivious RAM for secure computation. In: ACM CCS (2014)Google Scholar
  45. [Yao82]
    Yao,A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd FOCS (1982)Google Scholar
  46. [Yao86]
    Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS (1986)Google Scholar
  47. [ZRE15]
    Zahur, S., Rosulek, M., Evans, D.: Two Halves Make a Whole. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_8CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Visa ResearchPalo AltoUSA

Personalised recommendations