Better Bootstrapping for Approximate Homomorphic Encryption

  • Kyoohyung HanEmail author
  • Dohyeong Ki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12006)


After Cheon et al. (Asiacrypt’ 17) proposed an approximate homomorphic encryption scheme, HEAAN, for operations between encrypted real (or complex) numbers, the scheme is widely used in a variety of fields with needs on privacy-preserving in data analysis. After that, a bootstrapping method for HEAAN is proposed by Cheon et al. (Eurocrypt’ 18) with modulus reduction being replaced by a sine function. In this paper, we generalize the Full-RNS variant of HEAAN proposed by Cheon et al. (SAC, 19) to reduce the number of temporary moduli used in key-switching. As a result, our scheme can support more depth computations without bootstrapping while ensuring the same level of security.

We also propose a new polynomial approximation method to evaluate a sine function in an encrypted state, which is specialized for the bootstrapping for HEAAN. Our method considers a ratio between the size of a plaintext and the size of a ciphertext modulus. Consequently, it requires a smaller number of non-scalar multiplications, which is about half of the Chebyshev method.

With our variant of the Full-RNS scheme and a new sine evaluation method, we firstly implement bootstrapping for a Full-RNS variant of approximate homomorphic encryption scheme. Our method enables bootstrapping for a plaintext in the space \({\mathbb {C}}^{16384}\) to be completed in 52 s while preserving 11 bit precision of each slot.


Homomorphic encryption Bootstrapping 


  1. 1.
    Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bajard, J.-C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like somewhat homomorphic encryption schemes. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 423–442. Springer, Cham (2017). Scholar
  3. 3.
    Boemer, F., Lao, Y., Wierzynski, C.: nGraph-HE: a graph compiler for deep learning on homomorphically encrypted data. arXiv preprint arXiv:1810.10121 (2018)
  4. 4.
    Carpov, S., Gama, N., Georgieva, M., Troncoso-Pastoriza, J.R.: Privacy-preserving semi-parallel logistic regression training with Fully Homomorphic Encryption. Cryptology ePrint Archive, Report 2019/101 (2019).
  5. 5.
    Chen, H., Chillotti, I., Song, Y.: Improved bootstrapping for approximate homomorphic encryption. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 34–54. Springer, Cham (2019). Scholar
  6. 6.
    Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of approximate homomorphic encryption. In: Cid, C., Jacobson Jr., M. (eds.) SAC 2018. LNCS, vol. 11349, pp. 347–368. Springer, Cham (2018). Scholar
  7. 7.
    Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 360–384. Springer, Cham (2018). Scholar
  8. 8.
    Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). Scholar
  9. 9.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, vol. 9, pp. 169–178 (2009)Google Scholar
  10. 10.
    Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012). Scholar
  11. 11.
    Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homomorphic encryption scheme. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 83–105. Springer, Cham (2019). Scholar
  12. 12.
    Han, K., Hhan, M., Cheon, J.H.: Improved homomorphic discrete Fourier transforms and FHE bootstrapping. IEEE Access 7, 57361–57370 (2019)CrossRefGoogle Scholar
  13. 13.
    Han, K., Hong, S., Cheon, J.H., Park, D.: Efficient logistic regression on large encrypted data. Cryptology ePrint Archive, Report 2018/662 (2018)Google Scholar
  14. 14.
    Jiang, Y., Wang, C., Wu, Z., Du, X., Wang, S.: Privacy-preserving biomedical data dissemination via a hybrid approach. In: AMIA Annual Symposium Proceedings, vol. 2018, p. 1176. American Medical Informatics Association (2018)Google Scholar
  15. 15.
  16. 16.
    Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.H.: Logistic regression model training based on the approximate homomorphic encryption. BMC Med. Genomics 11(4) (2018). Article number: 83Google Scholar
  17. 17.
    Kim, M., Song, Y., Li, B., Micciancio, D.: Semi-parallel logistic regression for GWAS on encrypted data. Cryptology ePrint Archive, Report 2019/294 (2019).
  18. 18.
    Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X.: Secure logistic regression based on homomorphic encryption: Design and evaluation. JMIR Med. Inform. 6(2), e19 (2018)CrossRefGoogle Scholar
  19. 19.
    Paterson, M.S., Stockmeyer, L.J.: On the number of nonscalar multiplications necessary to evaluate polynomials. SIAM J. Comput. 2(1), 60–66 (1973)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Coinplug Inc.Seongnam-siRepublic of Korea
  2. 2.Seoul National UniversitySeoulRepublic of Korea

Personalised recommendations