Optimization of Machining of Hard Material

  • Manjunath Patel G. C.Email author
  • Ganesh R. Chate
  • Mahesh B. Parappagoudar
  • Kapil Gupta
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


In real-life engineering problems, conducting practical experiments and collecting experimental data for analysis and evaluation in order to attain optimal solutions are difficult as compared to data-driven optimization of mathematical functions. In particular, the numerical modelling and simulation process yield solutions and the duration may vary from few seconds to hours depending on the complexity of problems to be solved. Moreover, the solution obtained may or may not be the global optimal solution. Numerical modelling and simulation task can only predict the outputs for set of inputs and needs many try-error runs, which may not yield optimal solutions. On the other hand, optimization tools are capable to locate the global solutions with very less computational efforts, iterations, and time.


  1. 1.
    R.V. Rao, A. Saroj, An elitism-based self-adaptive multi-population Jaya algorithm and its applications. Soft. Comput. 23(12), 4383–4406 (2019)CrossRefGoogle Scholar
  2. 2.
    A.P. Engelbrecht, Computational Intelligence: An Introduction (Wiley, 2007)Google Scholar
  3. 3.
    H. Ganesan, G. Mohankumar, Optimization of machining techniques in CNC turning centre using genetic algorithm. Arab. J. Sci. Eng. 38(6), 1529–1538 (2013)CrossRefGoogle Scholar
  4. 4.
    D. Singh, P. Venkateswara Rao, Optimization of tool geometry and cutting parameters for hard turning. Mater. Manuf. Process. 22(1), 15–21 (2007)CrossRefGoogle Scholar
  5. 5.
    A. Panda, S.R. Das, D. Dhupal, Surface roughness analysis for economical feasibility study of coated ceramic tool in hard turning operation. Process Integr. Optim. Sustain. 1(4), 237–249 (2017)CrossRefGoogle Scholar
  6. 6.
    M. Mia, N.R. Dhar, Modeling of surface roughness using RSM, FL and SA in dry hard turning. Arab. J. Sci. Eng. 43(3), 1125–1136 (2018)CrossRefGoogle Scholar
  7. 7.
    M. Mia, G. Królczyk, R. Maruda, S. Wojciechowski, Intelligent optimization of hard-turning parameters using evolutionary algorithms for smart manufacturing. Materials 12(6), 879 (2019)CrossRefGoogle Scholar
  8. 8.
    R.V. Rao, Teaching-learning-based optimization algorithm, in Teaching learning based optimization algorithm (Springer, Cham, 2016), pp. 9–39. Scholar
  9. 9.
    B. Surekha, L.K. Kaushik, A.K. Panduy, P.R. Vundavilli, M.B. Parappagoudar, Multi-objective optimization of green sand mould system using evolutionary algorithms. Int. J. Adv. Manuf. Technol. 58(1–4), 9–17 (2012)CrossRefGoogle Scholar
  10. 10.
    G.R. Chate, G.C.M. Patel, A.S. Deshpande, M.B. Parappagoudar, Modeling and optimization of furan molding sand system using design of experiments and particle swarm optimization. Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng. 232(5), 579–598 (2018)CrossRefGoogle Scholar
  11. 11.
    G.R. Chate, G.M. Patel, S.B. Bhushan, M.B. Parappagoudar, A.S. Deshpande, Comprehensive modelling, analysis and optimization of furan resin-based moulding sand system with sawdust as an additive. J. Brazilian Soc. Mech. Sci. Eng. 41(4), 183 (2019). Scholar
  12. 12.
    G.C.M. Patel, A.K. Shettigar, M.B. Parappagoudar, A systematic approach to model and optimize wear behaviour of castings produced by squeeze casting process. J. Manuf. Process. 32, 199–212 (2018)CrossRefGoogle Scholar
  13. 13.
    G.C.M. Patel, P. Krishna, M.B. Parappagoudar, P.R. Vundavilli, S.B. Bhushan, Squeeze casting parameter optimization using swarm intelligence and evolutionary algorithms, in Critical developments and applications of swarm intelligence (IGI Global, 2018), pp. 245–270Google Scholar
  14. 14.
    R.V. Rao, D.P. Rai, J. Balic, A multi-objective algorithm for optimization of modern machining processes. Eng. Appl. Artif. Intell. 61, 103–125 (2017)CrossRefGoogle Scholar
  15. 15.
    D.M. Babu, S.V. Kiran, P.R. Vundavilli, A. Mandal, Experimental investigations and multi-response optimisation of wire electric discharge machining of hypereutectic Al-Si alloys. Int. J. Manuf. Res. 11(3), 221–237 (2016)CrossRefGoogle Scholar
  16. 16.
    K. Srinivas, P.R. Vundavilli, M.M. Hussain, Optimization of weld-bead parameters of plasma arc welding using GA and IWO, in Advances in manufacturing technology (Springer Singapore, 2019), pp. 17–24Google Scholar
  17. 17.
    O. Kramer, Genetic algorithm essentials, vol. 679 (Springer, Singapore, 2017)zbMATHCrossRefGoogle Scholar
  18. 18.
    N.M. Razali, J. Geraghty, Genetic algorithm performance with different selection strategies in solving TSP, in Proceedings of the world congress on engineering, vol. 2(1) (International Association of Engineers, Hong Kong, 2011), pp. 1–6Google Scholar
  19. 19.
    J. Kennedy, Swarm intelligence. in Handbook of nature-inspired and innovative computing (Springer, Boston, MA, 2006), pp. 187–219.
  20. 20.
    R.V. Rao, V.J. Savsani, D.P. Vakharia, Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011)CrossRefGoogle Scholar
  21. 21.
    R.V. Rao, Teaching-learning-based optimization algorithm, in Teaching learning-based optimization algorithm (Springer, Cham, 2016), pp. 9–39Google Scholar
  22. 22.
    R.V. Rao, Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 7, 19–34 (2016)Google Scholar
  23. 23.
    R.V. Rao, D.P. Rai, Optimisation of welding processes using quasi-oppositional-based Jaya algorithm. J. Exp. Theor. Artif. Intell. 29(5), 1099–1117 (2017)CrossRefGoogle Scholar
  24. 24.
    R.V. Rao, Jaya: An Advanced Optimization Algorithm and its Engineering Applications (Springer International Publishing, Cham, 2019). Scholar
  25. 25.
    K. Yu, J.J. Liang, B.Y. Qu, X. Chen, H. Wang, Parameters identification of photovoltaic models using an improved JAYA optimization algorithm. Energy Convers. Manag. 150, 742–753 (2017)CrossRefGoogle Scholar
  26. 26.
    F.J. Pontes, A.P. de Paiva, P.P. Balestrassi, J.R. Ferreira, M.B. da Silva, Optimization of Radial Basis Function neural network employed for prediction of surface roughness in hard turning process using Taguchi’s orthogonal arrays. Expert Syst. Appl. 39(9), 7776–7787 (2012)CrossRefGoogle Scholar
  27. 27.
    H. Aouici, M.A. Yallese, B. Fnides, K. Chaoui, T. Mabrouki, Modeling and optimization of hard turning of X38CrMoV5-1 steel with CBN tool: Machining parameters effects on flank wear and surface roughness. J. Mech. Sci. Technol. 25(11), 2843–2851 (2011)CrossRefGoogle Scholar
  28. 28.
    M. Mia, N.R. Dhar, Optimization of surface roughness and cutting temperature in high-pressure coolant-assisted hard turning using Taguchi method. Int. J. Adv. Manuf. Technol. 88(1–4), 739–753 (2017)CrossRefGoogle Scholar
  29. 29.
    M.W. Azizi, S. Belhadi, M.A. Yallese, T. Mabrouki, J.F. Rigal, Surface roughness and cutting forces modeling for optimization of machining condition in finish hard turning of AISI 52100 steel. J. Mech. Sci. Technol. 26(12), 4105–4114 (2012)CrossRefGoogle Scholar
  30. 30.
    I. Asiltürk, H. Akkuş, Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method. Measurement 44(9), 1697–1704 (2011)Google Scholar
  31. 31.
    K. Bouacha, M.A. Yallese, S. Khamel, S. Belhadi, Analysis and optimization of hard turning operation using cubic boron nitride tool. Int. J. Refract. Metal Hard Mater. 45, 160–178 (2014)CrossRefGoogle Scholar
  32. 32.
    H. Aouici, M.A. Yallese, K. Chaoui, T. Mabrouki, J.F. Rigal, Analysis of surface roughness and cutting force components in hard turning with CBN tool: Prediction model and cutting conditions optimization. Measurement 45(3), 344–353 (2012)CrossRefGoogle Scholar
  33. 33.
    D. Manivel, R. Gandhinathan, Optimization of surface roughness and tool wear in hard turning of austempered ductile iron (grade 3) using Taguchi method. Measurement 93, 108–116 (2016)CrossRefGoogle Scholar
  34. 34.
    K. Bouacha, M.A. Yallese, T. Mabrouki, J.F. Rigal, Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool. Int. J. Refract. Metal Hard Mater. 28(3), 349–361 (2010)CrossRefGoogle Scholar
  35. 35.
    I. Meddour, M.A. Yallese, R. Khattabi, M. Elbah, L. Boulanouar, Investigation and modeling of cutting forces and surface roughness when hard turning of AISI 52100 steel with mixed ceramic tool: cutting conditions optimization. Int. J. Adv. Manuf. Technol. 77(5–8), 1387–1399 (2015)CrossRefGoogle Scholar
  36. 36.
    Y. Karpat, T. Özel, Multi-objective optimization for turning processes using neural network modeling and dynamic-neighborhood particle swarm optimization. Int. J. Adv. Manuf. Technol. 35(3–4), 234–247 (2007)CrossRefGoogle Scholar
  37. 37.
    W.B. Rashid, S. Goel, J.P. Davim, S.N. Joshi, Parametric design optimization of hard turning of AISI 4340 steel (69 HRC). Int. J. Adv. Manuf. Technol. 82(1–4), 451–462 (2016)CrossRefGoogle Scholar
  38. 38.
    B.M. Gopalsamy, B. Mondal, S. Ghosh, Taguchi method and ANOVA: An approach for process parameters optimization of hard machining while machining hardened steel. J. Sci. Ind. Res. 68, 686–695 (2009)Google Scholar
  39. 39.
    D.P. Selvaraj, P. Chandramohan, M. Mohanraj, Optimization of surface roughness, cutting force and tool wear of nitrogen alloyed duplex stainless steel in a dry turning process using Taguchi method. Measurement 49, 205–215 (2014)CrossRefGoogle Scholar
  40. 40.
    J.T. Horng, N.M. Liu, K.T. Chiang, Investigating the machinability evaluation of Hadfield steel in the hard turning with Al2O3/TiC mixed ceramic tool based on the response surface methodology. J. Mater. Process. Technol. 208(1–3), 532–541 (2008)CrossRefGoogle Scholar
  41. 41.
    Z. Hessainia, A. Belbah, M.A. Yallese, T. Mabrouki, J.F. Rigal, On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations. Measurement 46(5), 1671–1681 (2013)CrossRefGoogle Scholar
  42. 42.
    V.N. Gaitonde, S.R. Karnik, J.P. Davim, Multiperformance optimization in turning of free-machining steel using Taguchi method and utility concept. J. Mater. Eng. Perform. 18(3), 231–236 (2009)CrossRefGoogle Scholar
  43. 43.
    S.K. Shihab, Z.A. Khan, A. Mohammad, A.N. Siddiquee, Optimization of surface integrity in dry hard turning using RSM. Sadhana 39(5), 1035–1053 (2014)CrossRefGoogle Scholar
  44. 44.
    A.P. Paiva, E.J. Paiva, J.R. Ferreira, P.P. Balestrassi, S.C. Costa, A multivariate mean square error optimization of AISI 52100 hardened steel turning. Int. J. Adv. Manuf. Technol. 43(7–8), 631–643 (2009)CrossRefGoogle Scholar
  45. 45.
    S.S. Mahapatra, A. Patnaik, P.K. Patnaik, Parametric analysis and optimization of cutting parameters for turning operations based on Taguchi method, in Proceedings of the International Conference on Global Manufacturing and Innovation, vol. 10 (2006), p. 27Google Scholar
  46. 46.
    A.H. Suhail, N. Ismail, S.V. Wong, N.A. Jalil, Optimization of cutting parameters based on surface roughness and assistance of workpiece surface temperature in turning process. Am. J. Eng. Appl. Sci. 3(1), 102–108 (2010)CrossRefGoogle Scholar
  47. 47.
    S. Chinchanikar, S.K. Choudhury, Effect of work material hardness and cutting parameters on performance of coated carbide tool when turning hardened steel: An optimization approach. Measurement 46(4), 1572–1584 (2013)CrossRefGoogle Scholar
  48. 48.
    A.P. Paiva, J.R. Ferreira, P.P. Balestrassi, A multivariate hybrid approach applied to AISI 52100 hardened steel turning optimization. J. Mater. Process. Technol. 189(1–3), 26–35 (2007)CrossRefGoogle Scholar
  49. 49.
    A. Batish, A. Bhattacharya, M. Kaur, M.S. Cheema, Hard turning: Parametric optimization using genetic algorithm for rough/finish machining and study of surface morphology. J. Mech. Sci. Technol. 28(5), 1629–1640 (2014)CrossRefGoogle Scholar
  50. 50.
    S.R. Das, D. Dhupal, A. Kumar, Study of surface roughness and flank wear in hard turning of AISI 4140 steel with coated ceramic inserts. J. Mech. Sci. Technol. 29(10), 4329–4340 (2015)CrossRefGoogle Scholar
  51. 51.
    M. Mia, P.R. Dey, M.S. Hossain, M.T. Arafat, M. Asaduzzaman, M.S. Ullah, S.T. Zobaer, Taguchi S/N based optimization of machining parameters for surface roughness, tool wear and material removal rate in hard turning under MQL cutting condition. Measurement 122, 380–391 (2018)CrossRefGoogle Scholar
  52. 52.
    M. Mia, N.R. Dhar, Prediction and optimization by using SVR, RSM and GA in hard turning of tempered AISI 1060 steel under effective cooling condition. Neural Comput. Appl. 1–22. Scholar
  53. 53.
    Y. Huang, S.Y. Liang, Modeling of cutting forces under hard turning conditions considering tool wear effect. J. Manuf. Sci. Eng. 127(2), 262–270 (2005)CrossRefGoogle Scholar
  54. 54.
    C. Lahiff, S. Gordon, P. Phelan, PCBN tool wear modes and mechanisms in finish hard turning. Rob. Comput. Integr. Manuf. 23(6), 638–644 (2007)CrossRefGoogle Scholar
  55. 55.
    T. Özel, Y. Karpat, Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks. Int. J. Mach. Tools Manuf. 45(4–5), 467–479 (2005)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Manjunath Patel G. C.
    • 1
    Email author
  • Ganesh R. Chate
    • 2
  • Mahesh B. Parappagoudar
    • 3
  • Kapil Gupta
    • 4
  1. 1.Department of Mechanical EngineeringPES Institute of Technology and ManagementShivamoggaIndia
  2. 2.Department of Mechanical EngineeringKLS Gogte Institute of TechnologyBelgaumIndia
  3. 3.Department of Mechanical EngineeringPadre Conceicao College of EngineeringVernaIndia
  4. 4.Department of Mechanical and Industrial Engineering TechnologyUniversity of JohannesburgDoornfontein, JohannesburgSouth Africa

Personalised recommendations