Advertisement

Introduction to Hard Materials and Machining Methods

  • Manjunath Patel G. C.Email author
  • Ganesh R. Chate
  • Mahesh B. Parappagoudar
  • Kapil Gupta
Chapter
  • 14 Downloads
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Machining is most widely used to transform the material into the product of desired shape and size by the mechanism of removing excess material. Machining involves group of processes, wherein the excess material is removed from the work specimen in sequential steps with the help of cutting tools (either single point or multi-point). It is to be noted that machining with a single-point cutting tool uses well-defined tool geometry (i.e. cutting edges (honed, sharp, chamfered) possessing different faces (rake, flank, etc.)), whereas grinding process uses abrasive wheel with multi-point micro-cutting edges having undefined geometry [1, 2, 3].

References

  1. 1.
    G.V. Stabler, The fundamental geometry of cutting tools. Proc. Inst. Mech. Eng. 165(1), 14–26 (1951)CrossRefGoogle Scholar
  2. 2.
    J.P. Davim (ed.), Traditional Machining Processes: Research Advances (Springer, 2014)Google Scholar
  3. 3.
    V.P. Astakhov, Geometry of Single-Point Turning Tools and Drills: Fundamentals and Practical Applications (Springer Science & Business Media, 2010)Google Scholar
  4. 4.
    J.P. Davim (ed.), Machining: Fundamentals and Recent Advances (Springer Science & Business Media, 2008)Google Scholar
  5. 5.
    R.B.D. Pereira, C.H. Lauro, L.C. Brandão, J.R. Ferreira, J.P. Davim, Tool wear in dry helical milling for hole-making in AISI H13 hardened steel. Int. J. Adv. Manuf. Technol. 101(9–12), 2425–2439 (2018)Google Scholar
  6. 6.
    J. Vivancos, C.J. Luis, L. Costa, J.A. Ortız, Optimal machining parameters selection in high speed milling of hardened steels for injection moulds. J. Mater. Process. Technol. 155, 1505–1512 (2004)CrossRefGoogle Scholar
  7. 7.
    H. Coldwell, R. Woods, M. Paul, P. Koshy, R. Dewes, D. Aspinwall, Rapid machining of hardened AISI H13 and D2 moulds, dies and press tools. J. Mater. Process. Technol. 135(2–3), 301–311 (2003)CrossRefGoogle Scholar
  8. 8.
    S. Dilbag, P.V. Rao, Performance improvement of hard turning with solid lubricants. Int. J. Adv. Manuf. Technol. 38(5–6), 529–535 (2008)CrossRefGoogle Scholar
  9. 9.
    V.N. Gaitonde, S.R. Karnik, L. Figueira, J.P. Davim, Analysis of machinability during hard turning of cold work tool steel (type: AISI D2). Mater. Manuf. Processes 24(12), 1373–1382 (2009)CrossRefGoogle Scholar
  10. 10.
    E.M. Trent, P.K. Wright, Metal cutting (Butterworth-Heinemann, MA, 2000)CrossRefGoogle Scholar
  11. 11.
    T.H.C. Childs, K. Maekawa, T. Obikawa, Y. Yamane, Metal Machining: Theory and Applications (Elsevier, MA, 2000)Google Scholar
  12. 12.
    A. Shokrani, V. Dhokia, S. Newman, Investigation of the effects of cryogenic machining on surface integrity in CNC end milling of Ti-6Al-4V titanium alloy. J. Manuf. Process. 21, 172–179 (2016)CrossRefGoogle Scholar
  13. 13.
    R.V. Rao, V.D. Kalyankar, Parameter optimization of modern machining processes using teaching–learning-based optimization algorithm. Eng. Appl. Artif. Intell. 26(1), 524–531 (2013)CrossRefGoogle Scholar
  14. 14.
    W. Wei, Z. Di, D.M. Allen, H.J.A. Almond, Non-traditional machining techniques for fabricating metal aerospace filters. Chin. J. Aeronaut. 21(5), 441–447 (2008)CrossRefGoogle Scholar
  15. 15.
    F. Cus, J. Balic, Optimization of cutting process by GA approach. Robot. Comput. Integr. Manuf. 19(1–2), 113–121 (2003)CrossRefGoogle Scholar
  16. 16.
    T.N. Wong, S.L. Siu, A knowledge-based approach to automated machining process selection and sequencing. Int. J. Prod. Res. 33(12), 3465–3484 (1995)zbMATHCrossRefGoogle Scholar
  17. 17.
    I. Mukherjee, P.K. Ray, A review of optimization techniques in metal cutting processes. Comput. Ind. Eng. 50(1–2), 15–34 (2006)CrossRefGoogle Scholar
  18. 18.
    B. Arezoo, K. Ridgway, A.M.A. Al-Ahmari, Selection of cutting tools and conditions of machining operations using an expert system. Comput. Ind. 42(1), 43–58 (2000)CrossRefGoogle Scholar
  19. 19.
    R. Suresh, S. Basavarajappa, V.N. Gaitonde, G.L. Samuel, Machinability investigations on hardened AISI 4340 steel using coated carbide insert. Int. J. Refract Metal Hard Mater. 33, 75–86 (2012)CrossRefGoogle Scholar
  20. 20.
    H. Aouici, H. Bouchelaghem, M.A. Yallese, M. Elbah, B. Fnides, Machinability investigation in hard turning of AISI D3 cold work steel with ceramic tool using response surface methodology. Int. J. Adv. Manuf. Technol. 73(9–12), 1775–1788 (2014)CrossRefGoogle Scholar
  21. 21.
    G. Bartarya, S.K. Choudhury, State of the art in hard turning. Int. J. Mach. Tools Manuf 53(1), 1–14 (2012)CrossRefGoogle Scholar
  22. 22.
    F. Klocke, E. Brinksmeier, K. Weinert, Capability profile of hard cutting and grinding processes. CIRP Ann. Manuf. Technol. 54(2), 22–45 (2005)CrossRefGoogle Scholar
  23. 23.
    Y.K. Chou, Hui Song, Tool nose radius effects on finish hard turning. J. Mater. Process. Technol. 148(2), 259–268 (2004)CrossRefGoogle Scholar
  24. 24.
    H.K. Tonshoff, H.G. Wobker, D. Brandt, Hard turning—Influence on the workpiece properties. Trans. North Am. Manuf. Res. Inst. SME 23, 215–220 (1995)Google Scholar
  25. 25.
    L.N.L. De Lacalle, A. Lamikiz, J.F. de Larrinoa, I. Azkona, Advanced cutting tools, in Machining of Hard Materials (Springer, London, 2011), pp. 33–86Google Scholar
  26. 26.
    E. Kuram, B. Ozcelik, E. Demirbas, Environmentally friendly machining: vegetable based cutting fluids, in Green Manufacturing Processes and Systems (Springer, Berlin, Heidelberg, 2013), pp. 23–47Google Scholar
  27. 27.
    W.W. Badiuzaman, M.A. Karim, N.A. Derahman, N.M. Amran, M.M. Isa, Analysation of performances of CNC high speed milling machine using multi-walled carbon nanotubes as additives in cutting fluid. Materialwiss Werkstofftechnik 49(4), 494–499 (2018)CrossRefGoogle Scholar
  28. 28.
    G. Byrne, E. Scholta, Environmentally clean machining processes—a strategic approach. CIRP Ann. Manuf. Technol. 42(1), 471–474 (1993)CrossRefGoogle Scholar
  29. 29.
    Y.M. Shashidhara, S.R. Jayaram, Vegetable oils as a potential cutting fluid—an evolution. Tribol. Int. 43(5–6), 1073–1081 (2010)CrossRefGoogle Scholar
  30. 30.
    P.S. Sreejith, B.K.A. Ngoi, Dry machining: machining of the future. J. Mater. Process. Technol. 101(1–3), 287–291 (2000)CrossRefGoogle Scholar
  31. 31.
    A.E. Diniz, R. Micaroni, Cutting conditions for finish turning process aiming: the use of dry cutting. Int. J. Mach. Tools Manuf. 42(8), 899–904 (2002)CrossRefGoogle Scholar
  32. 32.
    R.W. Cumberland, M.B. Weinberger, J.J. Gilman, S.M. Clark, S.H. Tolbert, R.B. Kaner, Osmium diboride, an ultra-incompressible, hard material. J. Am. Chem. Soc. 127(20), 7264–7265 (2005)CrossRefGoogle Scholar
  33. 33.
    S. Singh, S. Maheshwari, P.C. Pandey, Some investigations into the electric discharge machining of hardened tool steel using different electrode materials. J. Mater. Process. Technol. 149(1–3), 272–277 (2004)CrossRefGoogle Scholar
  34. 34.
    V.P. Astakhov, Machining of hard materials–definitions and industrial applications, in Machining of Hard Materials (Springer, London, 2011), pp. 1–32Google Scholar
  35. 35.
    M.W. Cook, P.K. Bossom, Trends and recent developments in the material manufacture and cutting tool application of polycrystalline diamond and polycrystalline cubic boron nitride. Int. J. Refract Metal Hard Mater. 18(2–3), 147–152 (2000)CrossRefGoogle Scholar
  36. 36.
    D. Umbrello, J. Hua, R. Shivpuri, Hardness-based flow stress and fracture models for numerical simulation of hard machining AISI 52100 bearing steel. Mater. Sci. Eng. A 374(1–2), 90–100 (2004)CrossRefGoogle Scholar
  37. 37.
    G. Grzesik, Machining of hard materials, in Machining: Fundamentals and Recent Advances, ed. by P. Davim (Springer, London, 2008), pp. 97–126CrossRefGoogle Scholar
  38. 38.
    S. Malkin, C. Guo, Grinding Technology: Theory and Application of Machining with Abrasives (Industrial Press Inc., 2008)Google Scholar
  39. 39.
    S. Jha, V.K. Jain, Nanofinishing techniques, in Micromanufacturing and Nanotechnology (Springer, Berlin, Heidelberg, 2006), pp. 171–195Google Scholar
  40. 40.
    E.O. Ezugwu, Key improvements in the machining of difficult-to-cut aerospace superalloys. Int. J. Mach. Tools Manuf. 45(12–13), 1353–1367 (2005)CrossRefGoogle Scholar
  41. 41.
    J. Rech, A. Moisan, Surface integrity in finish hard turning of case hardened steel. Int. J. Mach. Tools Manuf. 43(5), 543–550 (2003)CrossRefGoogle Scholar
  42. 42.
    D.I. Lalwani, N.K. Mehta, P.K. Jain, Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel. J. Mater. Process. Technol. 206(1–3), 167–179 (2008)CrossRefGoogle Scholar
  43. 43.
    G. Byrne, D. Dornfeld, B. Denkena, Advancing cutting technology. Ann CIRP 52(2), 483–507 (2003)CrossRefGoogle Scholar
  44. 44.
    D. Singh, P.V. Rao, A surface roughness prediction model for hard turning process. Int. J. Adv. Manuf. Technol. 32(11–12), 1115–1124 (2007)CrossRefGoogle Scholar
  45. 45.
    W. König, R. Komanduri, H.K. Toenshoff, G. Ackershott, Machining of hard materials. CIRP Ann. 33(2), 417–427 (1984)CrossRefGoogle Scholar
  46. 46.
    H.K. Tönshoff, F. Kroos, C. Marzenell, High-pressure water peening-a new mechanical surface-strengthening process. CIRP Ann. 46(1), 113–116 (1997)CrossRefGoogle Scholar
  47. 47.
    A. Das, S.K. Patel, T.K. Hotta, B.B. Biswal, Statistical analysis of different machining characteristics of EN-24 alloy steel during dry hard turning with multilayer coated cermet inserts. Measurement 134, 123–141 (2019)CrossRefGoogle Scholar
  48. 48.
    M.A. Sampaio, Á.R. Machado, C.A.H. Laurindo, R.D. Torres, F.L. Amorim, Influence of minimum quantity of lubrication (MQL) when turning hardened SAE 1045 steel: a comparison with dry machining. Int. J. Adv. Manuf. Technol. 98(1–4), 959–968 (2018)CrossRefGoogle Scholar
  49. 49.
    A. Alok, M. Das, Multi-objective optimization of cutting parameters during sustainable dry hard turning of AISI 52100 steel with newly develop HSN2-coated carbide insert. Measurement 133, 288–302 (2019)CrossRefGoogle Scholar
  50. 50.
    H.A. Kishawy, A. Hosseini, Machining difficult-to-cut materials. Mater. Form. Mach. Tribol. (2019).  https://doi.org/10.1007/978-3-319-95966-5_4CrossRefGoogle Scholar
  51. 51.
    R. Kumar, A.K. Sahoo, P.C. Mishra, R.K. Das, Measurement and machinability study under environmentally conscious spray impingement cooling assisted machining. Measurement 135, 913–927 (2019)CrossRefGoogle Scholar
  52. 52.
    S. Debnath, M.M. Reddy, A. Pramanik, Dry and near-dry machining techniques for green manufacturing, in Innovations in Manufacturing for Sustainability. Materials Forming, Machining and Tribology, ed. by K. Gupta (Springer, Cham, 2019)Google Scholar
  53. 53.
    B.P. Erdel, High-Speed Machining. Society of Manufacturing Engineers (2003)Google Scholar
  54. 54.
    R. Suresh, S. Basavarajappa, V.N. Gaitonde, G.L. Samuel, J.P. Davim, State-of-the-art research in machinability of hardened steels. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 227(2), 191–209 (2013)CrossRefGoogle Scholar
  55. 55.
    R. Hasan, Why are you still grinding? Manuf. Eng. (USA) 120(2), 76 (1998)Google Scholar
  56. 56.
    H. Tonshoff, C. Arendt, R. Ben Amor, Cutting of hardened steel. Ann. CIRP 49, 547–566 (2000)CrossRefGoogle Scholar
  57. 57.
    H.K. Toenshoff, B. Denkena, Basics of Cutting and Abrasive Processes. Lecture Notes in Production Engineering.  https://doi.org/10.1007/978-3-642-33257-9_11 (2013)Google Scholar
  58. 58.
    V.F. Makarov, D.I. Tokarev, V.R. Tyktamishev, High speed broaching of hard machining materials. Int. J. Mater. Form. 1(1), 547–550 (2008)CrossRefGoogle Scholar
  59. 59.
    U. Kokturk, E. Budak, Optimization of broaching tool design, in Proceeding of the CIRP ICME, 4 (2004)Google Scholar
  60. 60.
    D. Shi, D.A. Axinte, N.N. Gindy, Development of an online machining process monitoring system: a case study of the broaching process. Int. J. Adv. Manuf. Technol. 34(1–2), 34–46 (2007)CrossRefGoogle Scholar
  61. 61.
    J. Kundrák, A.G. Mamalis, A. Markopoulos, Finishing of hardened boreholes: grinding or hard cutting? Mater. Manuf. Processes 19(6), 979–993 (2004)CrossRefGoogle Scholar
  62. 62.
    Y. Matsumoto, F. Hashimoto, G. Lahoti, Surface integrity generated by precision hard turning. CIRP Ann. Manuf. Technol. 48(1), 59–62 (1999)CrossRefGoogle Scholar
  63. 63.
    J. Kundrák, Hard boring of gears. J. Prod. Process. Syst. 6(1), 61–70 (2012)Google Scholar
  64. 64.
    W. Li, Y. Guo, C. Guo, Superior surface integrity by sustainable dry hard milling and impact on fatigue. CIRP Ann. Manuf. Technol. 62(1), 567–570 (2013)CrossRefGoogle Scholar
  65. 65.
    H. Çalışkan, C. Kurbanoğlu, P. Panjan, D. Kramar, Investigation of the performance of carbide cutting tools with hard coatings in hard milling based on the response surface methodology. Int. J. Adv. Manuf. Technol. 66(5–8), 883–893 (2013)CrossRefGoogle Scholar
  66. 66.
    P. Chatterjee, S. Chakraborty, Material selection using preferential ranking methods. Mater. Des. 35, 384–393 (2012)CrossRefGoogle Scholar
  67. 67.
    A. Iqbal, H. Ning, I. Khan, L. Liang, N.U. Dar, Modeling the effects of cutting parameters in MQL-employed finish hard-milling process using D-optimal method. J. Mater. Process. Technol. 199(1–3), 379–390 (2008)CrossRefGoogle Scholar
  68. 68.
    D.A. Axinte, R.C. Dewes, Surface integrity of hot work tool steel after high speed milling-experimental data and empirical models. J. Mater. Process. Technol. 127(3), 325–335 (2002)CrossRefGoogle Scholar
  69. 69.
    S. Zhang, Y.B. Guo, Taguchi method based process space for optimal surface topography by finish hard milling. J. Manuf. Sci. Eng. 131(5), 051003 (2009)CrossRefGoogle Scholar
  70. 70.
    D.W. Wu, Y. Matsumoto, The effect of hardness on residual stresses in orthogonal machining of AISI 4340 steel. J. Eng. Ind. 112(3), 245–252 (1990)CrossRefGoogle Scholar
  71. 71.
    H. Çalışkan, B. Kurşuncu, C. Kurbanoğlu, Ş.Y. Güven, Material selection for the tool holder working under hard milling conditions using different multi criteria decision making methods. Mater. Des. 45, 473–479 (2013)CrossRefGoogle Scholar
  72. 72.
    O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application. Int. J. Plast 16(10–11), 1391–1409 (2000)zbMATHCrossRefGoogle Scholar
  73. 73.
    R.L. Klueh, Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors. Int. Mater. Rev. 50(5), 287–310 (2005)CrossRefGoogle Scholar
  74. 74.
    M. Finšgar, J. Jackson, Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review. Corros. Sci. 86, 17–41 (2014)CrossRefGoogle Scholar
  75. 75.
    J.R. Davis, Surface Hardening of Steels (ASM International, Materials Park, OH, 2002), p. 227Google Scholar
  76. 76.
    K. Moore, D.N. Collins, Cryogenic treatment of three heat-treated tool steels, in Key Engineering Materials, vol. 86 (1993), pp. 47–54CrossRefGoogle Scholar
  77. 77.
    A.R. Machado, J. Wallbank, Machining of titanium and its alloys—a review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 204(1), 53–60 (1990)CrossRefGoogle Scholar
  78. 78.
    E.O. Ezugwu, Z.M. Wang, Titanium alloys and their machinability—a review. J. Mater. Process. Technol. 68(3), 262–274 (1997)CrossRefGoogle Scholar
  79. 79.
    X. Yang, C. Richard Liu, Machining titanium and its alloys. Mach. Sci. Technol. 3(1), 107–139 (1999)CrossRefGoogle Scholar
  80. 80.
    E.O. Ezugwu, Z.M. Wang, A.R. Machado, The machinability of nickel-based alloys: a review. J. Mater. Process. Technol. 86(1–3), 1–16 (1999)CrossRefGoogle Scholar
  81. 81.
    I.A. Choudhury, M.A. El-Baradie, Machinability of nickel-base super alloys: a general review. J. Mater. Process. Technol. 77(1–3), 278–284 (1998)CrossRefGoogle Scholar
  82. 82.
    R.R. Boyer, Attributes, characteristics, and applications of titanium and its alloys. J. Mater. 62(5), 21–24 (2010)Google Scholar
  83. 83.
    C.N. Elias, J.H.C. Lima, R. Valiev, M.A. Meyers, Biomedical applications of titanium and its alloys. J. Mater. 60(3), 46–49 (2008)Google Scholar
  84. 84.
    I.V. Gorynin, Titanium alloys for marine application. Mater. Sci. Eng. A 263(2), 112–116 (1999)CrossRefGoogle Scholar
  85. 85.
    U.K. Karl, Metal matrix composites: custom-made materials for automotive and aerospace engineering, in Basics of Metal Matrix Composites, ed. by K.U. Kainer (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, 2006)Google Scholar
  86. 86.
    R. Teti, Machining of composite materials. CIRP Ann. Manuf. Technol. 51(2), 611–634 (2002)CrossRefGoogle Scholar
  87. 87.
    T.W. Chou, J.M. Yang, Structure-performance maps of polymeric, metal, and ceramic matrix composites. Metall. Trans. A 17(9), 1547–1559 (1986)CrossRefGoogle Scholar
  88. 88.
    A. Evans, C. San Marchi, A. Mortensen, Metal Matrix Composites in Industry: An Introduction and a Survey (Springer Science & Business Media, 2013)Google Scholar
  89. 89.
    A.B. Sadat, Surface integrity when machining metal matrix composites, in Machining of Metal Matrix Composites (Springer, London, 2012), pp. 51–61Google Scholar
  90. 90.
    C.R. Dandekar, Y.C. Shin, Modeling of machining of composite materials: a review. Int. J. Mach. Tools Manuf. 57, 102–121 (2012)CrossRefGoogle Scholar
  91. 91.
    N. Muthukrishnan, M. Murugan, K.P. Rao, Machinability issues in turning of Al-SiC (10p) metal matrix composites. Int. J. Adv. Manuf. Technol. 39(3–4), 211–218 (2008)CrossRefGoogle Scholar
  92. 92.
    I.A. Di, A. Paoletti, Machinability aspects of metal matrix composites, in Machining of Metal Matrix Composites (Springer, London, 2012), pp. 63–77Google Scholar
  93. 93.
    X.Q. Cao, R. Vassen, D. Stoever, Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 24(1), 1–10 (2004)CrossRefGoogle Scholar
  94. 94.
    Y. Imanaka, Y. Suzuki, T. Suzuki, K. Hirao, T. Tsuchiya, H. Nagata, J.S. Cross, Advanced Ceramic Technologies and Products (The Ceramic Society of Japan, 2012).  https://doi.org/10.1007/978-4-431-54108-0_2
  95. 95.
    A. Gorin, M.M. Reddy, Advanced ceramics: Some challenges and solutions in machining by conventional methods. Appl. Mech. Mater. 624, 42–47 (2014)CrossRefGoogle Scholar
  96. 96.
    V.P. Astakhov, J.P. Davim, Tools (geometry and material) and tool wear, in Machining (Springer, London, 2008), pp. 29–57Google Scholar
  97. 97.
    B. Mills, Machinability of Engineering Materials (Springer Science & Business Media, 2012).  https://doi.org/10.1007/978-94-009-6631-4CrossRefGoogle Scholar
  98. 98.
    H. Tschätsch, Applied Machining Technology (Springer Science & Business Media, 2010).  https://doi.org/10.1007/978-3-642-01007-1CrossRefGoogle Scholar
  99. 99.
    V.P. Astakhov, Tribology of Metal Cutting, vol. 52 (Elsevier, Amsterdam, 2006)Google Scholar
  100. 100.
    K.D. Bouzakis, N. Michailidis, G. Skordaris, E. Bouzakis, D. Biermann, R. M’Saoubi, Cutting with coated tools: Coating technologies, characterization methods and performance optimization. CIRP Ann. Manuf. Technol. 61(2), 703–723 (2012)CrossRefGoogle Scholar
  101. 101.
    Z.C. Lin, D.Y. Chen, A study of cutting with a CBN tool. J. Mater. Process. Technol. 49(1–2), 149–164 (1995)CrossRefGoogle Scholar
  102. 102.
    F. Klocke, Manufacturing Processes (Springer, Berlin, 2011)zbMATHCrossRefGoogle Scholar
  103. 103.
    Z.G. Wang, M. Rahman, Y.S. Wong, Tool wear characteristics of binderless CBN tools used in high-speed milling of titanium alloys. Wear 258(5–6), 752–758 (2005)CrossRefGoogle Scholar
  104. 104.
    Z.A. Zoya, R. Krishnamurthy, The performance of CBN tools in the machining of titanium alloys. J. Mater. Process. Technol. 100(1–3), 80–86 (2000)CrossRefGoogle Scholar
  105. 105.
    C.B. Fuller, Friction stir tooling: tool materials and designs. Frict. Stir Weld. Process. (2007), pp. 7–36Google Scholar
  106. 106.
    M.K. Besharati-Givi, P. Asadi, Advances in Friction-Stir Welding and Processing (Elsevier, 2014)Google Scholar
  107. 107.
    R.M. Arunachalam, M.A. Mannan, A.C. Spowage, Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools. Int. J. Mach. Tools Manuf. 44(14), 1481–1491 (2004)CrossRefGoogle Scholar
  108. 108.
    A. Hosseini, H.A. Kishawy, Cutting tool materials and tool wear, in Machining of Titanium Alloys (Springer, Berlin, Heidelberg, 2014), pp. 31–56Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Manjunath Patel G. C.
    • 1
    Email author
  • Ganesh R. Chate
    • 2
  • Mahesh B. Parappagoudar
    • 3
  • Kapil Gupta
    • 4
  1. 1.Department of Mechanical EngineeringPES Institute of Technology and ManagementShivamoggaIndia
  2. 2.Department of Mechanical EngineeringKLS Gogte Institute of TechnologyBelgaumIndia
  3. 3.Department of Mechanical EngineeringPadre Conceicao College of EngineeringVernaIndia
  4. 4.Department of Mechanical and Industrial Engineering TechnologyUniversity of JohannesburgDoornfontein, JohannesburgSouth Africa

Personalised recommendations