Advertisement

Turbulent Natural Convection Heat Transfer in External Flows

  • Aroon Shenoy
Chapter
  • 17 Downloads

Abstract

Chapter 4 handles turbulent natural convection heat transfer in external flow situations, such as the vertical flat plate and arbitrary geometric configurations which include the vertical cone pointing downward, horizontal circular cylinder, and the sphere. Expressions for the average Nusselt number are derived by similarity transformations using the approximate integral method of analysis under the assumption of high Prandtl numbers.

References

  1. Argumedo, A., Tung, T. T., & Chang, K. I. (1978). Rheological property measurements of drag reducing polyacrylamide solutions. Transactions Society of Rheology, 22, 449.CrossRefGoogle Scholar
  2. Bejan, A. (1984). Convective heat transfer. New York: Wiley.zbMATHGoogle Scholar
  3. Cho, Y. I., & Hartnett, J. P. (1982). Non-newtonian fluids in circular pipe flows. Advances Heat Transfer, 15, 59–141.CrossRefGoogle Scholar
  4. Eckert, E. R., & Jackson, T. (1950). Analysis of turbulent free convection boundary layer on a flat plate (p. 2207). Washington, DC: National Advisory Committee of Aeronautics Technology Note.Google Scholar
  5. Griffiths, E., & Davis, A. H. (1922). The transmission of heat by radiation and convection (Report No. 9). DSIR-Food Invest. Bd. Spec.Google Scholar
  6. Hellums, J. D., & Churchill, S. W. (1964). Simplification of the mathematical description of boundary and initial value problems. AICHE Journal, 10(1), 110–114.CrossRefGoogle Scholar
  7. Marrucci, G., & Astarita, G. (1967). Turbulent heat transfer in viscoelastic liquids. Industrial and Engineering Chemistry Fundamentals, 6(3), 470–471.CrossRefGoogle Scholar
  8. Mizushina, T., & Usui, H. (1977). Reduction of eddy diffusion for momentum and heat in viscoelastic fluid flow in a circular tube. Physics of Fluids, 20(10), S100–S108.CrossRefGoogle Scholar
  9. Nakayama, A., & Koyama, H. (1985). An analysis of turbulent free convection about bodies of arbitrary geometrical configurations. Warme-und Stoffuberttragung, 19, 263–268.CrossRefGoogle Scholar
  10. Nakayama, A., & Shenoy, A. V. (1992). Turbulent free convection heat transfer to drag-reducing fluids from arbitrary geometric configurations. Transactions ASME Journal of Heat Transfer, 114(1), 127–134.CrossRefGoogle Scholar
  11. Ng, K. S., Cho, Y. I., & Hartnett, J. P. (1980). Heat transfer performance of concentrated polyethylene oxide and polyacrylamide solutions. AICHE Symposium Series No. 199, 76, 250–256.Google Scholar
  12. Shenoy, A. V. (1986). Turbulent flow of mildly elastic fluids through rotating straight circular tubes. Journal of Applied Sciences Research, 43(1), 39–54.zbMATHGoogle Scholar
  13. Shenoy, A. V. (1987). Effects of bouyancy on heat transfer during turbulent flow of drag reducing fluids in vertical pipes. Warme- und Stoffubertragung, 21(1), 15–18.MathSciNetCrossRefGoogle Scholar
  14. Shenoy, A. V., & Mashelkar, R. A. (1983). Engineering estimate of hydrodynamic entrance lengths in non-newtonian turbulent flow. Industrial and Engineering Chemistry Process Design and Development, 22(1), 165–168.CrossRefGoogle Scholar
  15. Shenoy, A. V., & Shintre, S. N. (1986). Developing and fully developed turbulent flow of drag reducing fluids in an annular duct. The Canadian Journal of Chemical Engineering, 64(2), 190–195.CrossRefGoogle Scholar
  16. Shenoy, A. V., Ranade, V. R., & Ulbrecht, J. J. (1980). Turbulent flow of mildly viscoelastic liquids in curved tubes. Chemical Engineering Communications, 5(5–6), 269–286.CrossRefGoogle Scholar
  17. Skelland, A. H. (1967). Non-newtonian flow and heat transfer. New York: Wiley.Google Scholar
  18. Tsukahara, T., & Kawaguchi, Y. (2011). Turbulent heat transfer in Drag-Reducing Channel flow of viscoelastic fluid. In A. Ahsan (Ed.), Evaporation, condensation and heat transfer (pp. 375–400). Croatia, Balkans. (www.intechopen.com): InTech.Google Scholar
  19. Virk, P. S. (1966). The toms phenomenon – Turbulent pipe flow of dilute polymer solutions, Mass. Inst. of Tech., (ScD Thesis).Google Scholar
  20. Virk, P. S. (1975). Drag reduction fundamentals. AICHE Journal, 21(4), 625–656.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Aroon Shenoy
    • 1
  1. 1.Waterford HillsGermantownUSA

Personalised recommendations