Manganite Pervoskite Nanoparticles: Synthesis, Heating Mechanism, Toxicity, and Self-regulated Hyperthermia

  • Navadeep Shrivastava
  • Yasir Javed
  • Khuram Ali
  • Muhammad Raza Ahmad
  • Kanwal Akhtar
  • S. K. SharmaEmail author
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)


In the present chapter, we have reviewed the possibility of LaMnO3 and Sr-doped perovskite manganites LaMnO3 (LMO) nanomaterials in therapeutics and diagnostics with a special attention for hyperthermia applications. In addition, we have also emphasized on the importance of synthesis, heating mechanism, concept of self-regulated hyperthermia, and toxicity issue of this important class of nanomaterials for their safer use in biological applications.


LSMO nanoparticles Synthesis and surface modifications Heating mechanism Hyperthermia applications Toxicity study 


  1. Andra W, Nowak H (eds) (2007) Magnetism in medicine. Eiley-VCH Verlag GmbHGoogle Scholar
  2. AOTrauma (2001) Swiss society for biomaterials, tissue and cell engineering society. Eur Cells MaterGoogle Scholar
  3. Babincová M, Altanerova V, Altaner C, Bergemann C, Babinec P (2008) In vitro analysis of cisplatin functionalized magnetic nanoparticles in combined cancer chemotherapy and electromagnetic hyperthermia. IEEE Trans Nanobiosci 7:15–19CrossRefGoogle Scholar
  4. Bahadur D, Prasad NK, Rathinasamy K, Panda D (2007) TC-Tuned biocompatible suspension of La0.73Sr0.27MnO3 for magnetic hyperthermia. Wiley-InterscienceGoogle Scholar
  5. Balamurugan S, Melba K (2015) Zn(1-x)CuxO (0.02 ≤ x ≤ 0.1) nanomaterials prepared by ball milling, citrate sol gel, and molten salt flux methods. J Nanosci Nanotechnol 15:4632–4640Google Scholar
  6. Barakat NS (2009) Magnetically modulated nanosystems: a unique drug-delivery platform. Nanomedicine 4:799–812CrossRefGoogle Scholar
  7. Berkova Z, Jirak D, Zacharovova K, Lukes I, Kotkova Z, Kotek J, Kacenka M, Kaman O, Rehor I, Hajek M (2013) Gadolinium-and manganite-based contrast agents with fluorescent probes for both magnetic resonance and fluorescence imaging of pancreatic islets: a comparative study. ChemMedChem 8:614–621CrossRefGoogle Scholar
  8. Bhayani K, Kale S, Arora S, Rajagopal R, Mamgain H, Kaul-Ghanekar R, Kundaliya DC, Kulkarni S, Pasricha R, Dhole S (2007) Protein and polymer immobilized La0. 7Sr0. 3MnO3 nanoparticles for possible biomedical applications. Nanotechnology 18:345101Google Scholar
  9. Bhayani K, Rajwade J, Paknikar K (2012) Radio frequency induced hyperthermia mediated by dextran stabilized LSMO nanoparticles: in vitro evaluation of heat shock protein response. Nanotechnology 24:015102CrossRefGoogle Scholar
  10. Brusentsov NA, Brusentsova TN, Filinova EY (2007) Principles of magnetohydrodynamic thermochemotherapy of malignant tumors (a review). Pharm Chem J 41:455–460CrossRefGoogle Scholar
  11. Bubnovskaya L, Belous A, Solopan S, Kovelskaya A, Bovkun L, Podoltsev A, Kondtratenko I, Osinsky S (2014) Magnetic fluid hyperthermia of rodent tumors using manganese perovskite nanoparticles. J Nanopart 2014:1–9CrossRefGoogle Scholar
  12. Bulte JW (2009) In vivo MRI cell tracking: clinical studies. Am J Roentgenol 193:314–325CrossRefGoogle Scholar
  13. Carvalho FS, Burgeiro A, Garcia R, Moreno AJ, Carvalho RA, Oliveira PJ (2014) Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy. Med Res Rev 34:106–135CrossRefGoogle Scholar
  14. Corot C, Robert P, Idée J-M, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504CrossRefGoogle Scholar
  15. Daengsakul S, Mongkolkachit C, Thomas C, Siri S, Thomas I, Amornkitbamrung V, Maensiri S (2009a) A simple thermal decomposition synthesis, magnetic properties, and cytotoxicity of La0.7Sr0.3MnO3 nanoparticles. Appl Phys A 96:691–699Google Scholar
  16. Daengsakul S, Thomas C, Thomas I, Mongkolkachit C, Siri S, Amornkitbamrung V, Maensiri S (2009b) Magnetic and cytotoxicity properties of La(1-x)Sr(x)MnO(3) (0. Nanoscale Res Lett 4:839–845CrossRefGoogle Scholar
  17. Daengsakul S, Thomas C, Thomas I, Mongkolkachit C, Siri S, Amornkitbamrung V, Maensiri S (2009b) Magnetic and cytotoxicity properties of La(1-x)Sr(x)MnO(3) (0 </= x </= 0.5) nanoparticles prepared by a simple thermal hydro-decomposition. Nanoscale Res Lett 4(8):839–845Google Scholar
  18. Das N, Mondal P, Bhattacharya D (2006) Particle-size dependence of orbital order-disorder transition in La Mn O 3. Phys Rev B 74:014410CrossRefGoogle Scholar
  19. Ebrahimi M (2016) On the temperature control in self-controlling hyperthermia therapy. J Magn Magn Mater 416:134–140CrossRefGoogle Scholar
  20. Epherre R, Duguet E, Mornet S, Pollert E, Louguet S, Lecommandoux S, Schatz C, Goglio G (2011a) Manganite perovskite nanoparticles for self-controlled magnetic fluid hyperthermia: about the suitability of an aqueous combustion synthesis route. J Mater Chem 21:4393–4401CrossRefGoogle Scholar
  21. Epherre R, Pepin C, Penin N, Duguet E, Mornet S, Pollert E, Goglio G (2011b) Evidence of non-stoichiometry effects in nanometric manganite perovskites: influence on the magnetic ordering temperature. J Mater Chem 21:14990CrossRefGoogle Scholar
  22. Falk MH, Issels RD (n.d.) Hyperthermia in oncology. Int J Hyperthermia 17:1–18Google Scholar
  23. Feldhoff A, Arnold M, Martynczuk J, Gesing TM, Wang H (2008) The sol–gel synthesis of perovskites by an EDTA/citrate complexing method involves nanoscale solid state reactions. Solid State Sci 10:689–701CrossRefGoogle Scholar
  24. Ferreira L (2009) Nanoparticles as tools to study and control stem cells. J Cell Biochem 108:746–752CrossRefGoogle Scholar
  25. Fodale V, Pierobon M, Liotta L, Petricoin E (2011) Mechanism of cell adaptation: when and how do cancer cells develop chemoresistance? Cancer J (Sudbury, Mass) 17:89Google Scholar
  26. Getzlaff M (2007) Fundamentals of magnetism. Springer Science & Business MediaGoogle Scholar
  27. Ghosh B, Siruguri V, Raychaudhuri AK, Chatterji T (2014) Effect of size reduction on the structural and magnetic order in LaMnO3+δ (δ ≈ 0.03) nanocrystals: a neutron diffraction study. J Phys Condens Matter 26:025603Google Scholar
  28. Giri A, Makhal A, Ghosh B, Raychaudhuri A, Pal SK (2010) Functionalization of manganite nanoparticles and their interaction with biologically relevant small ligands: picosecond time-resolved FRET studies. Nanoscale 2:2704–2709CrossRefGoogle Scholar
  29. Gogoi M, Sarma HD, Bahadur D, Banerjee R (2014) Biphasic magnetic nanoparticles–nanovesicle hybrids for chemotherapy and self-controlled hyperthermia. Nanomedicine 9:955–970CrossRefGoogle Scholar
  30. Gogoi M, Jaiswal MK, Sarma HD, Bahadur D, Banerjee R (2017) Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy. Integr Biol 9:555–565CrossRefGoogle Scholar
  31. Goya G, Grazu V, Ibarra M (2008) Magnetic nanoparticles for cancer therapy. Curr Nanosci 4:1–16CrossRefGoogle Scholar
  32. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRefGoogle Scholar
  33. Haghniaz R, Bhayani KR, Umrani RD, Paknikar KM (2013) Dextran stabilized lanthanum strontium manganese oxide nanoparticles for magnetic resonance imaging. RSC Adv 3:18489–18497CrossRefGoogle Scholar
  34. Haghniaz R, Umrani RD, Paknikar KM (2016) Hyperthermia mediated by dextran-coated La0.7Sr0.3MnO3 nanoparticles: in vivo studies. Int J Nanomed 11:1779Google Scholar
  35. Hedayatnasab Z, Abnisa F, Daud WMAW (2017) Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des 123:174–196CrossRefGoogle Scholar
  36. Heijkoop ST, Franckena M, Thomeer MG, Boere IA, Van Montfort C, Van Doorn HC (2012) Neoadjuvant chemotherapy followed by radiotherapy and concurrent hyperthermia in patients with advanced-stage cervical cancer: a retrospective study. Int J Hyperth 28:554–561CrossRefGoogle Scholar
  37. Hilger I, Kießling A, Romanus E, Hiergeist R, Hergt R, Andrä W, Roskos M, Linss W, Weber P, Weitschies W, Kaiser WA (2004) Magnetic nanoparticles for selective heating of magnetically labelled cells in culture: preliminary investigation. Nanotechnology. 15:1027–1032CrossRefGoogle Scholar
  38. Hilger I, Hergt R, Kaiser WA (2005) Towards breast cancer treatment by magnetic heating. J Magn Magn Mater 293:314–319CrossRefGoogle Scholar
  39. Hong R, Li J, Qu J, Chen L, Li H (2009) Preparation and characterization of magnetite/dextran nanocomposite used as a precursor of magnetic fluid. Chem Eng J 150:572–580CrossRefGoogle Scholar
  40. Huang D-M, Chung T-H, Hung Y, Lu F, Wu S-H, Mou C-Y, Yao M, Chen Y-C (2008) Internalization of mesoporous silica nanoparticles induces transient but not sufficient osteogenic signals in human mesenchymal stem cells. Toxicol Appl Pharmacol 231:208–215CrossRefGoogle Scholar
  41. Huang J, Wang J, Su X, Hao W, Wang T, Xia Y, Da G, Fan Y (2012) Biocompatibility of nanoporous TiO2 coating on NiTi alloy prepared via dealloying method. J Nanomater 2012:8Google Scholar
  42. Ito A, Kamihira M (2011) Tissue engineering using magnetite nanoparticles. In: Progress in molecular biology and translational science. Elsevier, pp 355–395Google Scholar
  43. Jadhav S, Nikam D, Khot V, Thorat N, Phadatare M, Ningthoujam R, Salunkhe A, Pawar S (2013) Studies on colloidal stability of PVP-coated LSMO nanoparticles for magnetic fluid hyperthermia. New J Chem 37:3121–3130CrossRefGoogle Scholar
  44. Jadhav S, Nikam D, Khot V, Mali S, Hong C, Pawar S (2015) PVA and PEG functionalised LSMO nanoparticles for magnetic fluid hyperthermia application. Mater Charact 102:209–220CrossRefGoogle Scholar
  45. Javed Y, Akhtar K, Anwar H, Jamil Y (2017) MRI based on iron oxide nanoparticles contrast agents: effect of oxidation state and architecture. J Nanopart Res 19:366CrossRefGoogle Scholar
  46. Jin Y, Jia C, Huang S-W, O’donnell M, Gao X (2010) Multifunctional nanoparticles as coupled contrast agents. Nat Commun 1:41Google Scholar
  47. Jordan A, Scholz R, Maier-Hauff K, Johannsen M, Wust P, Nadobny J, Schirra H, Schmidt H, Deger S, Loening S, Lanksch W, Felix R (2001) Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J Magn Magn Mater 225:118–126CrossRefGoogle Scholar
  48. Kačenka M, Kaman O, Kotek J, Falteisek L, Černý J, Jirák D, Herynek V, Zacharovová K, Berková Z, Jendelová P (2011) Dual imaging probes for magnetic resonance imaging and fluorescence microscopy based on perovskite manganite nanoparticles. J Mater Chem 21:157–164CrossRefGoogle Scholar
  49. Kale SN, Arora S, Bhayani KR, Paknikar KM, Jani M, Wagh UV, Kulkarni SD, Ogale SB (2006) Cerium doping and stoichiometry control for biomedical use of La0. 7Sr0. 3MnO3 nanoparticles: microwave absorption and cytotoxicity study. Nanomed Nanotechnol Biol Med 2:217–221Google Scholar
  50. Kaman O, Pollert E, Veverka P, Veverka M, Hadová E, Knížek K, Maryško M, Kašpar P, Klementová M, Grünwaldová V, Vasseur S, Epherre R, Mornet S, Goglio G, Duguet E (2009) Silica encapsulated manganese perovskite nanoparticles for magnetically induced hyperthermia without the risk of overheating. Nanotechnology 20:275610CrossRefGoogle Scholar
  51. Kerr JF, Winterford CM, Harmon BV (1994) Apoptosis. Its significance in cancer and cancer therapy. Cancer 73:2013–2026Google Scholar
  52. Khaing Oo MK, Yang Y, Hu Y, Gomez M, Du H, Wang H (2012) Gold nanoparticle-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin IX. ACS nano 6:1939–1947Google Scholar
  53. Kim T, Momin E, Choi J, Yuan K, Zaidi H, Kim J, Park M, Lee N, McMahon MT, Quinones-Hinojosa A (2011) Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T 1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J Am Chem Soc 133:2955–2961CrossRefGoogle Scholar
  54. Koning GA, Eggermont AM, Lindner LH, ten Hagen TL (2010) Hyperthermia and thermosensitive liposomes for improved delivery of chemotherapeutic drugs to solid tumors. Pharm Res 27:1750–1754CrossRefGoogle Scholar
  55. Kulkarni VM, Bodas D, Paknikar KM (2015) Lanthanum strontium manganese oxide (LSMO) nanoparticles: a versatile platform for anticancer therapy. RSC Adv 5:60254–60263CrossRefGoogle Scholar
  56. Kulkarni VM, Bodas D, Dhoble D, Ghormade V, Paknikar K (2016) Radio-frequency triggered heating and drug release using doxorubicin-loaded LSMO nanoparticles for bimodal treatment of breast cancer. Colloids Surf B Biointerfaces 145:878–890CrossRefGoogle Scholar
  57. Lassa MS, Luques CG, Albornoz C, Leyva AG, Roig LV, Vazquez PG (2015) Magnetic nanoparticles of La0. 78Sr0. 22MnO3, coated with SiO2: preparation and cytotoxicity in human cell cultures. Procedia Mater Sci 8:358–365Google Scholar
  58. Lee M-Y, Song M-K, Kim J-S, Seo J-H (2014) Synthesis of single-phase gd-doped ceria nanopowders by radio frequency thermal plasma treatment. J Am Ceram Soc 97:1379–1382Google Scholar
  59. Li X, van Blitterswijk CA, Feng Q, Cui F, Watari F (2008) The effect of calcium phosphate microstructure on bone-related cells in vitro. Biomaterials 29:3306–3316CrossRefGoogle Scholar
  60. Lin MM, Kim DK, El Haj AJ, Dobson J (2008) Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications. IEEE Trans Nanobiosci 7:298–305CrossRefGoogle Scholar
  61. Liu Y, Du J, Yan M, Lau MY, Hu J, Han H, Yang OO, Liang S, Wei W, Wang H (2013) Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication. Nat Nanotechnol 8:187CrossRefGoogle Scholar
  62. Louguet S, Rousseau B, Epherre R, Guidolin N, Goglio G, Mornet S, Duguet E, Lecommandoux S, Schatz C (2012) Thermoresponsive polymer brush-functionalized magnetic manganite nanoparticles for remotely triggered drug release. Polym Chem 3:1408–1417CrossRefGoogle Scholar
  63. Mahendiran R, Tiwary SK, Raychaudhuri AK, Ramakrishnan TV, Mahesh R, Rangavittal N, Rao CNR (1996) Structure, electron-transport properties, and giant magnetoresistance of hole-doped LaMnO 3 systems. Phys Rev B 53:3348–3358CrossRefGoogle Scholar
  64. Mahmoudi M, Simchi A, Imani M, Shokrgozar MA, Milani AS, Häfeli UO, Stroeve P (2010) A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf, B 75:300–309CrossRefGoogle Scholar
  65. Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2011a) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112:2323–2338CrossRefGoogle Scholar
  66. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011b) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24–46CrossRefGoogle Scholar
  67. Makni J, Riahi K, Ayadi F, Nachbaur V, Cheikhrouhou-Koubaa W, Koubaa M, Hamayun MA, Hlil EK, Cheikhrouhou A (2018) Evaluation of La0.7Sr0.3Mn1-xBxO3 (B = Mo, Ti) nanoparticles synthesized via GNP method for self-controlled hyperthermia. J Alloys Compd 746:626–637Google Scholar
  68. Markovich V, Jung G, Fita I, Mogilyansky D, Wu X, Wisniewski A, Puzniak R, Titelman L, Vradman L, Herskowitz M, Gorodetsky G (2010) Magnetotransport properties of ferromagnetic LaMnO3 + δ nano-sized crystals. J Magn Magn Mater 322:1311–1314CrossRefGoogle Scholar
  69. McBride K, Cook J, Gray S, Felton S, Stella L, Poulidi D (2016) Evaluation of La 1−x Sr x MnO 3 (0 ≤ x < 0.4) synthesised via a modified sol–gel method as mediators for magnetic fluid hyperthermia. CrystEngComm 18:407–416Google Scholar
  70. Melnikov OV, Gorbenko OY, M̌arkelova MN, Kaul AR, Atsarkin VA, Demidov VV, Soto C, Roy EJ, Odintsov BM (2009) Ag-doped manganite nanoparticles: new materials for temperature-controlled medical hyperthermia. J Biomed Mater Res Part A 91A:1048–1055Google Scholar
  71. Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161CrossRefGoogle Scholar
  72. Mornet S, Vasseur S, Grasset F, Veverka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E (2006) Magnetic nanoparticle design for medical applications. Prog Solid State Chem 34:237–247CrossRefGoogle Scholar
  73. Mukasyan AS, Epstein P, Dinka P (2007) Solution combustion synthesis of nanomaterials. Proc Combust Inst 31:1789–1795CrossRefGoogle Scholar
  74. Mulier S, Claes J-P, Dierieck V, Amiel J-O, Pahaut J-P, Marcelis L, Bastin F, Vanderbeeken D, Finet C, Cran S (2012) Survival benefit of adding hyperthermic intraperitoneal chemotherapy (HIPEC) at the different time-points of treatment of ovarian cancer: review of evidence. Curr Pharm Des 18:3793–3803CrossRefGoogle Scholar
  75. Natividad E, Castro M, Goglio G, Andreu I, Epherre R, Duguet E, Mediano A (2012) New insights into the heating mechanisms and self-regulating abilities of manganite perovskite nanoparticles suitable for magnetic fluid hyperthermia. Nanoscale 4:3954–3962CrossRefGoogle Scholar
  76. Pandalai SG (2002) Recent research developments in materials science and engineering, vol 1, pt 1. Transworld Res NetwGoogle Scholar
  77. Prasad N, Rathinasamy K, Panda D, Bahadur D (2007) Mechanism of cell death induced by magnetic hyperthermia with nanoparticles of γ-Mn x Fe 2–x O 3 synthesized by a single step process. J Mater Chem 17:5042–5051CrossRefGoogle Scholar
  78. Prasad N, Rathinasamy K, Panda D, Bahadur D (2008) TC‐tuned biocompatible suspension of La0. 73Sr0. 27MnO3 for magnetic hyperthermia. J Biomed Mater Res Part B: Appl Biomater Off J Soc Biomater, Jpn Soc Biomater, Aust Soc Biomater Korean Soc Biomater 85:409–416Google Scholar
  79. Rajagopal R, Mona J, Kale S, Bala T, Pasricha R, Poddar P, Sastry M, Prasad B, Kundaliya DC, Ogale S (2006) La 0.7 Sr 0.3 Mn O 3 nanoparticles coated with fatty amine. Appl Phys Lett 89:023107Google Scholar
  80. Rao CNR, Raveau B (1998) Colossal magnetoresistance, charge ordering and related properties of manganese oxides. World Scientific, SingaporeCrossRefGoogle Scholar
  81. Rao CNR, Mahesh R, Raychaudhuri AK, Mahendiran R (1998) Giant magnetoresistance, charge ordering and other novel properties of perovskite manganates. J Phys Chem Solids 59:487–501CrossRefGoogle Scholar
  82. Rao BG, Mukherjee D, Reddy BM (2017) Novel approaches for preparation of nanoparticles. Nanostruct Nov Ther 1–36Google Scholar
  83. Schlachter EK, Widmer HR, Bregy A, Lönnfors-Weitzel T, Vajtai I, Corazza N, Bernau VJ, Weitzel T, Mordasini P, Slotboom J (2011) Metabolic pathway and distribution of superparamagnetic iron oxide nanoparticles: in vivo study. Int J Nanomed 6:1793Google Scholar
  84. Sen A, Capitano ML, Spernyak JA, Schueckler JT, Thomas S, Singh AK, Evans SS, Hylander BL, Repasky EA (2011) Mild elevation of body temperature reduces tumor interstitial fluid pressure and hypoxia and enhances efficacy of radiotherapy in murine tumor models. Can Res 71:3872–3880CrossRefGoogle Scholar
  85. Sharma R, Chen CJ (2009) Newer nanoparticles in hyperthermia treatment and thermometry. J Nanopart Res 11:671–689CrossRefGoogle Scholar
  86. Shinde KP, Deshpande NG, Eom T, Lee YP, Pawar SH (2010) Solution-combustion synthesis of La0. 65Sr0. 35MnO3 and the magnetocaloric properties. Mater Sci Eng B 167:202–205Google Scholar
  87. Shinoda K, Nakajima T, Tsuchiya T (2014) Fabrication of La1−xSrxMnO3 thin films by chemical solution deposition for high-temperature resistive materials. J Ceram Soc Jpn 122(6):415–420CrossRefGoogle Scholar
  88. Shlyakhtin OA, Leontiev VG, Oh Y-J, Kuznetsov AA (2007) New manganite-based mediators for self-controlled magnetic heating. Smart Mater Struct 16:N35–N39CrossRefGoogle Scholar
  89. Singh S, Armstrong A, Robke J, Waggoner S, Debernardo R (2014) Hyperthermic intra-thoracic chemotherapy (HITeC) for the management of recurrent ovarian cancer involving the pleural cavity. Gynecol Oncol Case Rep 9:24CrossRefGoogle Scholar
  90. Solanki A, Kim JD, Lee K-B (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imagingGoogle Scholar
  91. Soleymani M, Edrissi M, Alizadeh AM (2017) Tailoring La 1−x Sr x MnO 3 (0.25 ≤ x ≤ 0.35) nanoparticles for self-regulating magnetic hyperthermia therapy: an in vivo study. J Mater Chem B 5:4705–4712Google Scholar
  92. Song CW, Lokshina A, Rhee JG, Patten M, Levitt SH (1984) Implication of blood flow in hyperthermic treatment of tumors. IEEE Trans Biomed Eng 9–16Google Scholar
  93. Sun J, Song Y, Wang Z, Gao P, Chen X, Xu Y, Liang J, Xu H (2012) Benefits of hyperthermic intraperitoneal chemotherapy for patients with serosal invasion in gastric cancer: a meta-analysis of the randomized controlled trials. BMC Cancer 12:526CrossRefGoogle Scholar
  94. Tsai S-M, Mesina M, Goshia T, Chiu M-H, Young J, Sibal A, Chin W-C (2019) Perovskite nanoparticles toxicity study on airway epithelial cells. Nanoscale Res Lett 14:14CrossRefGoogle Scholar
  95. ur Rashid A, Manzoor S (2016) Optimizing magnetic anisotropy of La1 − xSrxMnO3 nanoparticles for hyperthermia applications. J Magn Magn Mater 420:232–240Google Scholar
  96. ur Rashid A, Ahmed A, Ahmad S, Shaheen S, Manzoor S (2013) Study of specific absorption rate of strontium doped lanthanum manganite nanoparticles for self-controlled hyperthermia applications. J Magn Magn Mater 347:39–44Google Scholar
  97. Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Tokura Y (1995) Insulator-metal transition and giant magnetoresistance in La1 − xSrxMnO3. Phys Rev B 51:14103–14109CrossRefGoogle Scholar
  98. Uskokovic V, Kosak A, Drofenik M, Drofenik M (2006) Preparation of silica-coated lanthanum-strontium manganite particles with designable curie point, for application in hyperthermia treatments. Int J Appl Ceram Technol 3:134–143CrossRefGoogle Scholar
  99. Vasseur S, Duguet E, Portier J, Goglio G, Mornet S, Hadová E, Knížek K, Maryško M, Veverka P, Pollert E (2006) Lanthanum manganese perovskite nanoparticles as possible in vivo mediators for magnetic hyperthermia. J Magn Magn Mater 302:315–320CrossRefGoogle Scholar
  100. Veverka P, Kaman O, Kačenka M, Herynek V, Veverka M, Šantavá E, Lukeš I, Jirák Z (2015) Magnetic La 1–x Sr x MnO 3 nanoparticles as contrast agents for MRI: the parameters affecting 1 H transverse relaxation. J Nanopart Res 17:33CrossRefGoogle Scholar
  101. Wang J, Gao Y, Hou Y, Zhao F, Pu F, Liu X, Wu Z, Fan Y (2012) Evaluation on cartilage morphology after intra-articular injection of titanium dioxide nanoparticles in rats. J Nanomater 2012:1Google Scholar
  102. Weissleder RA, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, Jacobs P, Lewis J (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Roentgenol 152:167–173CrossRefGoogle Scholar
  103. Westermann AM, Jones EL, Schem BC, van der Steen-Banasik EM, Koper P, Mella O, Uitterhoeve AL, de Wit R, van der Velden J, Burger C (2005) First results of triple-modality treatment combining radiotherapy, chemotherapy, and hyperthermia for the treatment of patients with Stage IIB, III, and IVA cervical carcinoma. Cancer 104:763–770CrossRefGoogle Scholar
  104. Zener C (1951) Interaction between the d-Shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys Rev 82:403–405Google Scholar
  105. Zhang K, Holloway T, Pradhan J, Bahoura M, Bah R, Rakhimov R, Pradhan A, Prabakaran R, Ramesh G (2010) Synthesis and magnetic characterizations of La1 − x Sr x MnO3 nanoparticles for biomedical applications. J Nanosci Nanotechnol 10:5520–5526CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Navadeep Shrivastava
    • 1
    • 2
  • Yasir Javed
    • 3
  • Khuram Ali
    • 4
  • Muhammad Raza Ahmad
    • 5
  • Kanwal Akhtar
    • 3
  • S. K. Sharma
    • 6
    Email author
  1. 1.Institute of Physics, Federal University of GoiasGoiania-GoBrazil
  2. 2.Department of Chemistry, Biochemistry and PhysicsUniversity of Quebec at Trois-RivieresTrois-RivièresCanada
  3. 3.Magnetic Materials Laboratory, Department of PhysicsUniversity of AgricultureFaisalabadPakistan
  4. 4.Nano-Optoelectronics Research Laboratory, Department of PhysicsUniversity of Agriculture FaisalabadFaisalabadPakistan
  5. 5.Centre for Advanced Studies in Physics (CASP)GC University LahoreLahorePakistan
  6. 6.Department of Physics, Faculty of Science and TechnologyThe University of the West IndiesSaint AugustineTrinidad and Tobago

Personalised recommendations