Advertisement

Evaluation of Hyperthermic Properties of Magnetic Nano-Heterostructures Based on Gold-Iron Oxide and Noble Metal-Ferrite Systems

  • SarveenaEmail author
  • Navadeep Shrivastava
  • Naveed A. Shad
  • Muhammad Munir Sajid
  • M. Singh
  • Yasir Javed
  • S. K. SharmaEmail author
Chapter
  • 52 Downloads
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

Magnetic particle hyperthermia is potentially the most significant and promising methods for cancer treatment. The high efficiency of this magnetic hyperthermia therapy is derived from a capability of nano-heterostructures to generate site-specific heating of tumors tissues due to their unique physicochemical properties with an ability to be functionalized at molecular and cellular level for biochemical interactions. Au-Fe3O4 nano-heterostructures are gaining ample significance in industry and research because of their superior properties coming from both individual and combinational features of gold and iron oxide nanoparticles. In this chapter, we have discussed the heat dissipation mechanisms and various parameters crucial for assessing the hyperthermia efficacy of gold-iron oxide and noble metal-ferrite systems.

Keywords

Magnetic particle hyperthermia Nano-heterostructures Specific absorption rate Cytotoxicity 

References

  1. Abedin MR, Umapathi S, Mahendrakar H, Laemthong T, Coleman H, Muchangi D, Santra S, Nath M, Barua S (2018) J Nanobiotechnol 16:1CrossRefGoogle Scholar
  2. Abenojar EC, Wickramasinghe S, Bas-Concepcion J, Samia ACS (2016) Prog Nat Sci Mater Int 26:440CrossRefGoogle Scholar
  3. Beik J, Abed Z, Ghoreishi FS, Hosseini-Nami S, Mehrzadi S, Shakeri-Zadeh A, Kamrava SK (2016) J Control Release 235:205CrossRefGoogle Scholar
  4. Chandra S, Frey Huls NA, Phan MH, Srinath S, Garcia MA, Lee Y, Wang C, Sun S, Iglesias Ò, Srikanth H (2014) Nanotechnology 25:055702Google Scholar
  5. Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, Heverhagen JT, Prosperi D, Parak WJ (2012) Chem Soc Rev 41:4306CrossRefGoogle Scholar
  6. Dabbagh A, Abdullah BJJ, Abdullah H, Hamdi M, Kasim NHA (2015) J Pharm Sci 104:2414CrossRefGoogle Scholar
  7. Daboin V, Briceño S, Suárez J, Carrizales-silva L, Silva P, Gonzalez G, Daboin V, Brice S (2019) J Magn Magn Mater 479:91CrossRefGoogle Scholar
  8. Fantechi E, Roca AG, Sepúlveda B, Torruella P, Estradé S, Peiró F, Coy E, Jurga S, Bastús NG, Nogués J, Puntes V (2017) Chem Mater 29:4022–4035CrossRefGoogle Scholar
  9. Garaio E, Sandre O, Collantes JM, Garcia JA, Mornet S, Plazaola F (2015) Nanotechnology 26:15704CrossRefGoogle Scholar
  10. Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Ann Surg 146:596CrossRefGoogle Scholar
  11. Guardia P, Nitti S, Materia ME, Pugliese G, Yaacoub N, Greneche JM, Lefevre C, Manna L, Pellegrino T (2017) J Mater Chem B 5:4587CrossRefGoogle Scholar
  12. Gutiérrez TJ, Alvarez VA (2018) In: Hussain CM (ed) Handbook of nanomaterials for industrial applications. Elsevier, pp 563–576Google Scholar
  13. Hervault A, Thanh NTK (2014) Nanoscale 6:11553CrossRefGoogle Scholar
  14. Javed Y, Ali K, Jamil Y (2017) In: Sharma SK (ed) Complex magnetic nanostructures. Springer International, pp 393–424Google Scholar
  15. Kozissnik B, Bohorquez AC, Dobson J, Rinaldi C (2013) Int J Hyperth 29:706CrossRefGoogle Scholar
  16. LeBrun A, Zhu L (2018) In: Shrivastava D (ed) Theory and applications of heat transfer in humans, pp 631–667Google Scholar
  17. Lemal P, Balog S, Geers C, Taladriz-Blanco P, Palumbo A, Hirt AM, Rothen-Rutishauser B, Petri-Fink A (2019) J Magn Magn Mater 474:637CrossRefGoogle Scholar
  18. León Félix L, Sanz B, Sebastián V, Torres TE, Sousa MH, Coaquira JAH, Ibarra MR, Goya GF (2019) Sci Rep 9:1Google Scholar
  19. Lettieri-Barbato D, Aquilano K (2018) Front Oncol 8:148CrossRefGoogle Scholar
  20. Liu B, Zhang H, Ding Y (2018) Chin Chem Lett 29:1725CrossRefGoogle Scholar
  21. López-Ortega A, Estrader M, Salazar-Alvarez G, Roca AG, Nogués J (2015) Phys Rep 553:1Google Scholar
  22. Mezni A, Balti I, Mlayah A, Jouini N, Smiri LS (2013) J Phys Chem C 117:16166CrossRefGoogle Scholar
  23. Mohammad F, Balaji G, Weber A, Uppu RM, Kumar CSSR (2010) J Phys Chem C 114:19194CrossRefGoogle Scholar
  24. Negut I, Grumezescu V (2019) In: Grumezescu AM (ed) Biomedical applications of nanoparticles. William Andrew, pp 63–90Google Scholar
  25. Nguyen DT, Park DW, Kim KS (2011) J Nanosci Nanotechnol 11:7214CrossRefGoogle Scholar
  26. Perigo EA, Hemery G, Sandre O, Ortega D, Garaio E, Plazaola F (2015) Appl Phys Rev 2:041302CrossRefGoogle Scholar
  27. Ravichandran M, Velumani S, Ramirez JT, Vera A, Leija L (2018) Artif Cells Nanomed Biotechnol 46:S993Google Scholar
  28. Sabale S, Jadhav V, Mane-Gavade S, Yu XY (2019) Acta Metall Sin (Engl Lett) 32:719Google Scholar
  29. Sanchez LM, Alvarez VA (2019) Bioengineering 6:75CrossRefGoogle Scholar
  30. Sangaa D, Khongorzul B, Uyanga E, Jargalan N, Tsogbadrakh N, Hirazawa H (2018) Solid State Phenom 271:51CrossRefGoogle Scholar
  31. Shaterabadi Z, Nabiyouni G, Soleymani M (2018) Prog Biophys Mol Biol 133:9CrossRefGoogle Scholar
  32. Shevchenko EV, Bodnarchuk MI, Kovalenko MV, Talapin DV, Smith RK, Aloni S, Heiss W, Alivisatos AP (2008) Adv Mater 20:4323CrossRefGoogle Scholar
  33. Stigliano RV, Shubitidze F, Petryk JD, Shoshiashvili L, Petryk AA, Hoopes PJ (2016) Int J Hyperth 32:735Google Scholar
  34. Suriyanto, Ng EYK, Kumar SD (2017) Biomed Eng Online 16(1)Google Scholar
  35. Wildeboer RR, Southern P, Pankhurst QA (2014) J Phys D Appl Phys 47Google Scholar
  36. Wu YN, Chen DH, Shi XY, Lian CC, Wang TY, Yeh CS, Ratinac KR, Thordarson P, Braet F, Bin Shieh D (2011) Nanomed Nanotechnol Biol Med 7:420Google Scholar
  37. Xu Z, Hou Y, Sun S (2007) J Am Chem Soc 129:8698CrossRefGoogle Scholar
  38. Yu X, Yang R, Wu C, Zhang W, Deng D, Zhang X, Li Y (2020) In: Wahab MA (ed) Proceedings of the 13th international conference on damage assessment of structures. Lecture notes in mechanical engineering. Springer, Singapore, pp 937–943Google Scholar
  39. Zhang H, Zhang YF, Gao F, Li GL, He Y, Peng ML, Fan HM, Liu XL (2018) Sci China Life Sci 61:400CrossRefGoogle Scholar
  40. Zhu L, Deng X, Hu Y, Liu J, Ma H, Zhang J, Fu J, He S, Wang J, Wang B, Xue D, Peng Y (2018) Nanoscale 10:21499CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sarveena
    • 1
    Email author
  • Navadeep Shrivastava
    • 2
  • Naveed A. Shad
    • 3
  • Muhammad Munir Sajid
    • 3
  • M. Singh
    • 4
  • Yasir Javed
    • 5
  • S. K. Sharma
    • 6
    Email author
  1. 1.Alakh Prakash Goyal Shimla UniversityShimlaIndia
  2. 2.Département de Chimie Biochimie et PhysiqueUniversité du Québec á Trois-RivièresTrois-RivièresCanada
  3. 3.Department of PhysicsGovernment College University FaisalabadFaisalabadPakistan
  4. 4.Department of PhysicsHimachal Pradesh UniversityShimlaIndia
  5. 5.Magnetic Materials Laboratory, Department of PhysicsUniversity of Agriculture FaisalabadFaisalabadPakistan
  6. 6.Department of Physics, Faculty of Science and TechnologyThe University of the West IndiesSt. AugustineTrinidad and Tobago

Personalised recommendations