Advertisement

Multiphase Pressure Swirl Atomizers for Agricultural Applications

  • Andżelika KrupińskaEmail author
  • Marek Ochowiak
  • Sylwia Włodarczak
  • Małgorzata Markowska
  • Magdalena Matuszak
  • Tomasz Szulc
Conference paper
  • 67 Downloads

Abstract

In order to obtain abundant crops of satisfactory quality, it is necessary to apply liquid chemicals during agrotechnical procedures. It is important to target the treatment for a specific purpose and reduce the losses of applied chemicals. The aim of a precise protection technique is to provide the active substance in the proper place, in sufficient quantity and in the appropriate form. One of the approaches to modify the physicochemical properties of plant protection products is the addition of small amounts of polymers. The efficiency and safety of spraying process is determined by properly selected atomizers. In the agriculture section on spatial cultivation and vegetables, vortex atomizers are usually used in the spraying process. Two new constructions of two-phase atomizers with a swirl flow and the experimental results on the spraying of aqueous solutions of sodium carboxymethylcellulose with various concentrations were shown in this chapter. The obtained results were compared with the data obtained when spraying water. The addition of polymer allows to obtain a much larger number of droplets with large diameters and reduces the share of the smallest sized droplets. As the concentration of polymer increased, larger diameter droplets were obtained and the spray angle was reduced. The obtained results confirm the application possibility of the developed constructions in the agriculture area.

Notes

Acknowledgments

This research was supported by Ministry of Science and Higher Education through grant PUT 03/32/SBAD/0921.

References

  1. Dafsari, R.A., Lee, H.J., Han, J., Park, D.C., Lee, J.: Viscosity effect on the pressure swirl atomization of an alternative aviation. Fuel 240, 179–191 (2019)CrossRefGoogle Scholar
  2. Eltkob, M.M., Rafat, N.M., Hanna, M.A.: The influence of swirl atomizer geometry on the atomization performance. In: Proceedings of the 1st International Conference on Liquid Atomization and Spray Systems, pp. 109–115 (1978)Google Scholar
  3. Grausz, T.W.: Chemia dla rolników poradnik BHP. Państwowa Inspekcja Pracy Główny Inspektorat Pracy, Warszawa (2015). in PolishGoogle Scholar
  4. Halder, M.R., Dash, S.H., Som, S.K.: A numerical and experimental investigation on the coefficients of discharge and the spray cone angle of a solid cone swirl nozzle. Int. J. Therm. Sci. 28, 297–305 (2004)Google Scholar
  5. Harrison, G.M., Mun, R., Cooper, G., Boger, D.V.: A note on the effect of polymer rigidity and concentration on spray atomisation. J. Non-Newtonian Fluid Mech. 85, 93–104 (1999)CrossRefGoogle Scholar
  6. Hermansky, C.G., Krause, G.F.: Relevant physical property measurement for adjuvants. In: Proceedings 4th International Conference, pp. 20–22 (1997)Google Scholar
  7. Kukrety, A., Singh, R.J., Singh, P., Ray, S.S.: Comprehension on the synthesis of Carboxymethylcellulose (CMC) utilizing various cellulose rich waste biomass resources. Waste Biomass Valori. 9, 1587–1595 (2018)CrossRefGoogle Scholar
  8. Lefebvre, A.H.: Atomization and Sprays. Hemisphere, New York (1989)Google Scholar
  9. Lefebvre, A.H.: Gas Turbine Combustion. CRC Press, Taylor and Francis, Philadelphia (1998)Google Scholar
  10. Lefebvre, A.H.: Fifty years of gas turbine fuel injection. Atom. Sprays 102, 251–276 (2000)CrossRefGoogle Scholar
  11. Li, J., Huang, Q., Liu, B.: A pest control model with birth pulse and residual and delay effects of pesticides. Adv. Differ. Equ. 117 (2019, in print)Google Scholar
  12. Liu, C., Liu, F., Yang, J., Mu, Y., Hu, C.: Experimental investigations of spray generated by a pressure swirl atomizer. J. Energy Inst. 92, 210–221 (2019)CrossRefGoogle Scholar
  13. Moon, S., Abo-Serie, E., Bae, Ch.: Air flow and pressure inside a pressure-swirl spray and their effects on spray development. Exp. Thermal Fluid Sci. 33, 222–231 (2009)CrossRefGoogle Scholar
  14. Mun, R.: The effects of polymer concentration and molecular weight on the breakup of laminar capillary jets. J. Non Newtonian Fluid Mech. 74, 285–297 (1998)CrossRefGoogle Scholar
  15. Ochowiak, M.: Analiza procesu rozpylania cieczy w rozpylaczach pęcherzykowych i pęcherzykowo- wirowych. Wydawnictwo Politechniki Poznańskiej, Poznań (2014). in PolishGoogle Scholar
  16. Ochowiak, M., Krupińska, A., Włodarczak, S., Matuszak, M., Szulc, T.: The studies of the two-phase flow for conical pressure-swirl atomizers. Chem. Eng. Equip. 56(6), 215–216 (2017)Google Scholar
  17. Ochowiak, M., Lytvynenko, O., Włodarczak, S., Matuszak, M., Krupińska, A.: Design and study of conical pressure-swirl atomizers. design, simulation, manufacturing: the innovation exchange In: DSMIE 2018: Advances in Design, Simulation and Manufacturing, pp. 472–480 (2018)Google Scholar
  18. Ramamurthi, K., Sarkar, L.K., Raghunandan, B.N.: Performance characteristics of effervescent atomizer in different flow regimes. Atom. Sprays 19, 41–56 (2009)CrossRefGoogle Scholar
  19. Rashad, M., Yong, H., Zekun, Z.: Effect of geometric parameters on spray characteristics of pressure swirl atomizers. Int. J. Hydrog. Energy 41, 15790–15799 (2016)CrossRefGoogle Scholar
  20. Rizk, N.K., Lefebvre, A.H.: Prediction of velocity coefficient and spray cone angle for simplex swirl atomizers. Int. J. Turbo Jet Engines 4, 65–74 (1987)CrossRefGoogle Scholar
  21. Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z dnia 18 kwietnia 2013 r. w sprawie wymagań integrowanej ochrony roślin (Dz.U. z 2013 r. poz. 505). in PolishGoogle Scholar
  22. Sovani, S.D., Sojka, P.E., Lefebvre, A.H.: Effervescent atomization. Prog. Energy Comb. Sci. 27, 483–521 (2001)CrossRefGoogle Scholar
  23. Wimmer, E., Brenn, G.: Viscous flow through the swirl chamber of a pressure-swirl atomizer. Int. J. Multiphase Flow 53, 100–113 (2013)CrossRefGoogle Scholar
  24. Włodarczak, S.: Analiza hydrodynamiki w rozpylaczach wirowych. Rozprawa doktorska, Poznań (2016). in PolishGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andżelika Krupińska
    • 1
    Email author
  • Marek Ochowiak
    • 1
  • Sylwia Włodarczak
    • 1
  • Małgorzata Markowska
    • 1
  • Magdalena Matuszak
    • 1
  • Tomasz Szulc
    • 2
  1. 1.Institute of Chemical Technology and EngineeringPoznan University of TechnologyPoznanPoland
  2. 2.Łukasiewicz Research Network - Industrial Institute of Agricultural EngineeringPoznanPoland

Personalised recommendations