Bone Cement pp 19-41 | Cite as

Conductivity: Materials Design

  • Hamid Reza RezaieEmail author
  • Mohammad Hossein Esnaashary
  • Masoud Karfarma
  • Andreas Öchsner
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


Natural bone tissue constructs from various components and structural features. To produce a bone substitution that can conduct and induce bone growth on its structure and gradually replace the substitution with newly grown tissue, the composition and structure of the substitution should be mimic the natural tissue components. In this order, composition and porous structure of bone have been considered in the synthesis of bone cement. In this chapter, at first structural and compositional features of bone tissue are evaluated. Moreover, based on this knowledge, selecting the bone cement composition and applying scaffold production method on them are studied.


  1. 1.
    T. Nakamura, M. Takemoto, Osteoconduction and its evaluation, in Bioceramics and Their Clinical Applications, ed. by T. Kokubo (CRC Press, Cambridge, 2008), pp. 183–198CrossRefGoogle Scholar
  2. 2.
    M.M. Stevens, Biomaterials for bone tissue engineering. Mater. Today 11, 18–25 (2008). Scholar
  3. 3.
    U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015). Scholar
  4. 4.
    A. Shekaran, A.J. García, Extracellular matrix-mimetic adhesive biomaterials for bone repair. J. Biomed. Mater. Res.—Part A 96(1), 261–272 (2011). Scholar
  5. 5.
    R.I. Freshney, Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, 6th edn. (Wiley, Hoboken, 2010)CrossRefGoogle Scholar
  6. 6.
    G. Karp, Cell and Molecular Biology: Concepts and Experiments, 7th edn. (Wiley, Danvers, 2013)Google Scholar
  7. 7.
    R. Vaishya, M. Chauhan, A. Vaish, Bone cement. J. Clin. Orthop. Trauma 4, 157–163 (2013). Scholar
  8. 8.
    C. Duval-Terrié, L. Lebrun, Polymerization and characterization of PMMA. Polymer chemistry laboratory experiments for undergraduate students. J. Chem. Educ. 83, 443 (2006). Scholar
  9. 9.
    J. Hasenwinkel, Bone cement, in Encyclopedia of Biomaterials and Biomedical Engineering, 2nd edn., ed. by G.E. Wnek, G.L. Bowlin (Informa Healthcare, New YorK, 2008), pp. 403–412Google Scholar
  10. 10.
    G. Lewis, Properties of acrylic bone cement: state of the art review. J. Biomed. Mater. Res. 38, 155–182 (1997).;2-CCrossRefGoogle Scholar
  11. 11.
    L. Hernández, M. Gurruchaga, I. Goñi, Injectable acrylic bone cements for vertebroplasty based on a radiopaque hydroxyapatite. Formulation and rheological behaviour. J. Mater. Sci. Mater. Med. 20, 89–97 (2009). Scholar
  12. 12.
    Y. Wang, Y. Xiao, X. Huang, M. Lang, Preparation of poly(methyl methacrylate) grafted hydroxyapatite nanoparticles via reverse ATRP. J. Colloid Interface Sci. 360, 415–421 (2011). Scholar
  13. 13.
    L. Chen, D. Zhai, Z. Huan, N. Ma, H. Zhu, C. Wu, J. Chang, Silicate bioceramic/PMMA composite bone cement with distinctive physicochemical and bioactive properties. RSC Adv. 5, 37314–37322 (2015). Scholar
  14. 14.
    B. Marrs, R. Andrews, T. Rantell, D. Pienkowski, Augmentation of acrylic bone cement with multiwall carbon nanotubes. J. Biomed. Mater. Res., Part A 77A, 269–276 (2006). Scholar
  15. 15.
    K. Król, K. Pielichowska, Modification of acrylic bone cements by poly(ethylene glycol) with different molecular weight. Polym. Adv. Technol. 27, 1284–1293 (2016). Scholar
  16. 16.
    Z. He, Q. Zhai, M. Hu, C. Cao, J. Wang, H. Yang, B. Li, Bone cements for percutaneous vertebroplasty and balloon kyphoplasty: current status and future developments. J. Orthop. Transl. 3, 1–11 (2015). Scholar
  17. 17.
    M. Salarian, W.Z. Xu, M.C. Biesinger, P.A. Charpentier, Synthesis and characterization of novel TiO 2 -poly(propylene fumarate) nanocomposites for bone cementation. J. Mater. Chem. B 2, 5145–5156 (2014). Scholar
  18. 18.
    E.L.S. Fong, B.M. Watson, F.K. Kasper, A.G. Mikos, Building bridges: leveraging interdisciplinary collaborations in the development of biomaterials to meet clinical needs. Adv. Mater. 24, 4995–5013 (2012). Scholar
  19. 19.
    S.J. Peter, P. Kim, A.W. Yasko, M.J. Yaszemski, A.G. Mikos, Crosslinking characteristics of an injectable poly(propylene fumarate)/beta-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement. J. Biomed. Mater. Res. 44, 314–321 (1999)CrossRefGoogle Scholar
  20. 20.
    N.S. Anitha, V. Thomas, M. Jayabalan, Poly(propylene fumarate)ln-vinyl pyrrolidone copolymer-based bone cement: setting and in-vitro biodegradation. J. Indian Inst. Sci. 79, 431–442 (1999)Google Scholar
  21. 21.
    S. He, M.J. Yaszemski, A.W. Yasko, P.S. Engel, A.G. Mikos, Injectable biodegradable polymer composites based on poly(propylene fumarate) crosslinked with poly(ethylene glycol)-dimethacrylate. Biomaterials 21, 2389–2394 (2000). Scholar
  22. 22.
    J.P. Fisher, D. Dean, A.G. Mikos, Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Biomaterials 23, 4333–4343 (2002)CrossRefGoogle Scholar
  23. 23.
    D. Hakimimehr, D.-M. Liu, T. Troczynski, In-situ preparation of poly(propylene fumarate)–hydroxyapatite composite. Biomaterials 26, 7297–7303 (2005). Scholar
  24. 24.
    X. Shi, B. Sitharaman, Q.P. Pham, F. Liang, K. Wu, W.E. Billups, L.J. Wilson, A.G. Mikos, Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials 28, 4078–4090 (2007). Scholar
  25. 25.
    B. Sitharaman, X. Shi, X.F. Walboomers, H. Liao, V. Cuijpers, L.J. Wilson, A.G. Mikos, J.A. Jansen, In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone 43, 362–370 (2008). Scholar
  26. 26.
    E. Fernandez, F.J. Gil, M.P. Ginebra, F.C.M. Driessens, J.A. Planell, S.M. Best, Calcium phosphate bone cements for clinical applications. Part II: Precipitate formation during setting reactions. J. Mater. Sci. Mater. Med. 10, 177–183 (1999). Scholar
  27. 27.
    M. Ginebra, E. Fernandez, F.C.M. Driessens, J.A. Planell, Modeling of the hydrolysis of a-tricalcium phosphate. J. Am. Ceram. Soc. 82, 2808–2812 (1999)CrossRefGoogle Scholar
  28. 28.
    A. Ewald, K. Helmschrott, G. Knebl, N. Mehrban, L.M. Grover, U. Gbureck, Effect of cold-setting calcium- and magnesium phosphate matrices on protein expression in osteoblastic cells. J. Biomed. Mater. Res. B Appl. Biomater. 96, 326–332 (2011). Scholar
  29. 29.
    C. Großardt, A. Ewald, L.M. Grover, J.E. Barralet, U. Gbureck, Passive and active in vitro resorption of calcium and magnesium phosphate cements by osteoclastic cells. Tissue Eng. Part A 16, 3687–3695 (2010). Scholar
  30. 30.
    U. Klammert, A. Ignatius, U. Wolfram, T. Reuther, U. Gbureck, In vivo degradation of low temperature calcium and magnesium phosphate ceramics in a heterotopic model. Acta Biomater. 7, 3469–3475 (2011). Scholar
  31. 31.
    F. Tamimi, Z. Sheikh, J. Barralet, Dicalcium phosphate cements: brushite and monetite. Acta Biomater. 8, 474–487 (2012). Scholar
  32. 32.
    K.L. Low, S.H. Tan, S.H.S. Zein, J.A. Roether, V. Mouriño, A.R. Boccaccini, Calcium phosphate-based composites as injectable bone substitute materials. J. Biomed. Mater. Res. B Appl. Biomater. 94, 273–286 (2010). Scholar
  33. 33.
    D.L. Alge, W.S. Goebel, T.-M.G. Chu, Effects of DCPD cement chemistry on degradation properties and cytocompatibility: comparison of MCPM/β-TCP and MCPM/HA formulations. Biomed. Mater. 8, 025010 (2013). Scholar
  34. 34.
    F. Chen, C. Liu, J. Wei, X. Chen, Physicochemical properties and biocompatibility of white dextrin modified injectable calcium-magnesium phosphate cement. Int. J. Appl. Ceram. Technol. 9, 979–990 (2012). Scholar
  35. 35.
    G. Mestres, M.-P. Ginebra, Novel magnesium phosphate cements with high early strength and antibacterial properties. Acta Biomater. 7, 1853–1861 (2011). Scholar
  36. 36.
    C. Moseke, V. Saratsis, U. Gbureck, Injectability and mechanical properties of magnesium phosphate cements. J. Mater. Sci. Mater. Med. 22, 2591–2598 (2011). Scholar
  37. 37.
    M. Nabiyouni, T. Brückner, H. Zhou, U. Gbureck, S.B. Bhaduri, Magnesium-based bioceramics in orthopedic applications. Acta Biomater. 66, 23–43 (2017). Scholar
  38. 38.
    N. Ostrowski, A. Roy, P.N. Kumta, Magnesium phosphate cement systems for hard tissue applications: a review. ACS Biomater. Sci. Eng. 2, 1067–1083 (2016). Scholar
  39. 39.
    A. Ewald, K. Helmschrott, G. Knebl, N. Mehrban, L.M. Grover, U. Gbureck, Effect of cold-setting calcium- and magnesium phosphate matrices on protein expression in osteoblastic cells. J. Biomed. Mater. Res.—Part B Appl. Biomater. 96B, 326–332 (2011). Scholar
  40. 40.
    U. Klammert, T. Reuther, M. Blank, I. Reske, J.E. Barralet, L.M. Grover, A.C. Kübler, U. Gbureck, Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement. Acta Biomater. 6, 1529–1535 (2010). Scholar
  41. 41.
    S.M. Kenny, M. Buggy, Bone cements and fillers: a review. J. Mater. Sci. Mater. Med. 14, 923–938 (2003). Scholar
  42. 42.
    Q.-Z. Chen, A.R. Boccaccini, Bioactive materials and scaffolds for tissue engineering, in Encyclopedia of Biomaterials and Biomedical Engineering, 2nd edn., ed. by G.E. Wnek, G.I. Bowlin (Informa Healthcare, New YorK, 2008), pp. 142–151Google Scholar
  43. 43.
    E.D. Boland, P.G. Espy, G.L. Bowlin, Tissue engineering scaffolds, in Encyclopedia of Biomaterials and Biomedical Engineering, 2nd edn., ed. by G.E. Wnek, G.I. Bowlin (Informa Healthcare, New YorK, 2008), pp. 2828–2837Google Scholar
  44. 44.
    T. Garg, O. Singh, S. Arora, R. Murthy, Scaffold: a novel carrier for cell and drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 29, 1–63 (2012)CrossRefGoogle Scholar
  45. 45.
    M. Shi, J.D. Kretlow, P.P. Spicer, Y. Tabata, N. Demian, M.E. Wong, F.K. Kasper, A.G. Mikos, Antibiotic-releasing porous polymethylmethacrylate/gelatin/antibiotic constructs for craniofacial tissue engineering. J. Control Release 152, 196–205 (2011). Scholar
  46. 46.
    H. Bai, F. Walsh, B. Gludovatz, B. Delattre, C. Huang, Y. Chen, A.P. Tomsia, R.O. Ritchie, Bioinspired hydroxyapatite/poly(methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method. Adv. Mater. 28, 50–56 (2016). Scholar
  47. 47.
    G. Radha, S. Balakumar, B. Venkatesan, E. Vellaichamy, A novel nano-hydroxyapatite—PMMA hybrid scaffolds adopted by conjugated thermal induced phase separation (TIPS) and wet-chemical approach: analysis of its mechanical and biological properties. Mater. Sci. Eng. C 75, 221–228 (2017). Scholar
  48. 48.
    A.M. Henslee, S.R. Shah, M.E. Wong, A.G. Mikos, F.K. Kasper, Degradable, antibiotic releasing poly(propylene fumarate)-based constructs for craniofacial space maintenance applications. J. Biomed. Mater. Res., Part A 103, 1485–1497 (2015). Scholar
  49. 49.
    C.W. Kim, R. Talac, L. Lu, M.J. Moore, B.L. Currier, M.J. Yaszemski, Characterization of porous injectable poly-(propylene fumarate)-based bone graft substitute. J. Biomed. Mater. Res., Part A 85A, 1114–1119 (2008). Scholar
  50. 50.
    J.P. Fisher, T.A. Holland, D. Dean, P.S. Engel, A.G. Mikos, Synthesis and properties of photocross-linked poly(propylene fumarate) scaffolds. J. Biomater. Sci. Polym. Ed. 12, 673–687 (2001). Scholar
  51. 51.
    S. Hesaraki, F. Moztarzadeh, D. Sharifi, Formation of interconnected macropores in apatitic calcium phosphate bone cement with the use of an effervescent additive. J. Biomed. Mater. Res., Part A 83A, 80–87 (2007). Scholar
  52. 52.
    W. Chen, H. Zhou, M. Tang, M.D. Weir, C. Bao, H.H.K. Xu, Gas-foaming calcium phosphate cement scaffold encapsulating human umbilical cord stem cells. Tissue Eng. Part A 18, 816–827 (2012). Scholar
  53. 53.
    L.A. Vasconcellos, L.A. dos Santos, Calcium phosphate cement scaffolds with PLGA fibers. Mater. Sci. Eng., C 33, 1032–1040 (2013). Scholar
  54. 54.
    A. Lode, K. Meissner, Y. Luo, F. Sonntag, S. Glorius, B. Nies, C. Vater, F. Despang, T. Hanke, M. Gelinsky, Fabrication of porous scaffolds by three-dimensional plotting of a pasty calcium phosphate bone cement under mild conditions. J. Tissue Eng. Regen. Med. 8, 682–693 (2014). Scholar
  55. 55.
    A.R. Akkineni, Y. Luo, M. Schumacher, B. Nies, A. Lode, M. Gelinsky, 3D plotting of growth factor loaded calcium phosphate cement scaffolds. Acta Biomater. 27, 264–274 (2015). Scholar
  56. 56.
    T. Liu, J. Li, Z. Shao, K. Ma, Z. Zhang, B. Wang, Y. Zhang, Encapsulation of mesenchymal stem cells in chitosan/β-glycerophosphate hydrogel for seeding on a novel calcium phosphate cement scaffold. Med. Eng. Phys. 56, 9–15 (2018). Scholar
  57. 57.
    T. Bian, K. Zhao, Q. Meng, H. Jiao, Y. Tang, J. Luo, Fabrication and performance of calcium phosphate cement/small intestinal submucosa composite bionic bone scaffolds with different microstructures. Ceram. Int. 44, 9181–9187 (2018). Scholar
  58. 58.
    E.B. Montufar, T. Traykova, C. Gil, I. Harr, A. Almirall, A. Aguirre, E. Engel, J.A. Planell, M.P. Ginebra, Foamed surfactant solution as a template for self-setting injectable hydroxyapatite scaffolds for bone regeneration. Acta Biomater. 6, 876–885 (2010). Scholar
  59. 59.
    E.B. Montufar, T. Traykova, E. Schacht, L. Ambrosio, M. Santin, J.A. Planell, M.-P. Ginebra, Self-hardening calcium deficient hydroxyapatite/gelatine foams for bone regeneration. J. Mater. Sci. Mater. Med. 21, 863–869 (2010). Scholar
  60. 60.
    D.L. Alge, J. Bennett, T. Treasure, S. Voytik-Harbin, W.S. Goebel, T.-M.G. Chu, Poly(propylene fumarate) reinforced dicalcium phosphate dihydrate cement composites for bone tissue engineering. J. Biomed. Mater. Res. A 100, 1792–1802 (2012). Scholar
  61. 61.
    S. Meininger, C. Moseke, K. Spatz, E. März, C. Blum, A. Ewald, E. Vorndran, Effect of strontium substitution on the material properties and osteogenic potential of 3D powder printed magnesium phosphate scaffolds. Mater. Sci. Eng., C 98, 1145–1158 (2019). Scholar
  62. 62.
    S. Meininger, S. Mandal, A. Kumar, J. Groll, B. Basu, U. Gbureck, Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Acta Biomater. 31, 401–411 (2016). Scholar
  63. 63.
    J. Lee, M.M. Farag, E.K. Park, J. Lim, H. Yun, A simultaneous process of 3D magnesium phosphate scaffold fabrication and bioactive substance loading for hard tissue regeneration. Mater. Sci. Eng., C 36, 252–260 (2014). Scholar
  64. 64.
    J.A. Kim, H. Yun, Y.-A. Choi, J.-E. Kim, S.-Y. Choi, T.-G. Kwon, Y.K. Kim, T.-Y. Kwon, M.A. Bae, N.J. Kim, Y.C. Bae, H.-I. Shin, E.K. Park, Magnesium phosphate ceramics incorporating a novel indene compound promote osteoblast differentiation in vitro and bone regeneration in vivo. Biomaterials 157, 51–61 (2018). Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hamid Reza Rezaie
    • 1
    Email author
  • Mohammad Hossein Esnaashary
    • 1
  • Masoud Karfarma
    • 1
  • Andreas Öchsner
    • 2
  1. 1.Ceramic and Biomaterial Division, Department of Engineering MaterialsIran University of Science and TechnologyTehranIran
  2. 2.Faculty of Mechanical EngineeringEsslingen University of Applied SciencesEsslingen am NeckarGermany

Personalised recommendations