Advertisement

Regulatory Scenarios to Counteract High Phosphorus Inputs into the Baltic Sea

  • Elke BloemEmail author
  • Silvia Haneklaus
  • Ewald Schnug
Chapter
  • 25 Downloads
Part of the Springer Water book series (SPWA)

Abstract

High phosphorus (P) inputs into environmental system such as the Baltic Sea are a topic of growing concern as eutrophication is endangering this natural ecosystems in its function as a habitat for sea life. The high P inputs are caused to a significant proportion from agriculture. Farmyard manure, sewage sludge, biogas digestates or animal by-products are regularly used as organic fertilizers in agriculture. Numerous studies show that the P balance of farms, particularly those of livestock farms, is very often excessively high. P accumulates in surface layers of agricultural soils when fertilized in excess via manure application and contributes to the eutrophication of both inland and coastal water bodies favorably by surface run-off and erosion. The Baltic Sea is one of the most polluted and endangered marine ecosystems. In the current chapter different options were compiled and discussed, which have the potential to reduce the pollution of the Baltic Sea significantly in future. These different options are intertwined so that each action alone will never achieve the same efficacy in reducing P losses to water bodies as the implementation of the full range of options.

Keywords

Phosphorus (P) Nitrogen (N) Nutrient-surplus Regulatory options Baltic sea 

Notes

Acknowledgements

The presented scenarios were prepared as a report within the BONUS project “Phosphorus Recycling of Mixed Substances” (PROMISE) and was supported by BONUS (Art 185), funded jointly by the EU and the national funding institutions Project Management Jülich (PTJ) in Germany, the Ministry of Agriculture and Forestry in Finland (mmm.fi) and the Vinnova in Sweden.

References

  1. 1.
    BLANO (Bund/Länder-Ausschuss Nord- und Ostsee) (2014) Harmonisierte Hintergrund- und Orientierungswerte für Nährstoffe und Chlorophyll-a in den deutschen Küstengewässern der Ostsee sowie Zielfrachten und Zielkonzentrationen für die Einträge über die Gewässer - Konzept zur Ableitung von Nährstoffreduktionszielen nach den Vorgaben der Wasserrahmenrichtlinie, der Meeresstrategie-Rahmenrichtlinie, der Helsinki- Konvention und des Göteborg-Protokolls. Bundesministerium für Umwelt, Naturschutz, Bau und ReaktorsicherheitGoogle Scholar
  2. 2.
    Haygarth PM, Hepworth L, Jarvis SC (1998) Forms of phosphorus transfer in hydrological pathways from soil under grazed grassland. Eur J Soil Sci 49:65–72CrossRefGoogle Scholar
  3. 3.
    HELCOM (Helsinki Commission) (2012) Fifth Baltic Sea Pollution Load Compilation (PLC-5). Baltic Sea Environment Proceedings No. 128, 217pGoogle Scholar
  4. 4.
    Granstedt A, Seuri P, Thomsson O (2008) Ecological recycling agriculture to reduce nutrient pollution to the Baltic Sea. J Biol Agric Hort 26:279–307CrossRefGoogle Scholar
  5. 5.
    HELCOM Baltic Sea Action Plan (2007) HELCOM Ministrial Meeting, Krakow, Poland, 15 November 2007, 101pGoogle Scholar
  6. 6.
    Laamanen M (2008) Towards a fair sharing of environmental burdens in the Baltic Sea region. Symposium of the Task Force on Sustainable Agriculture of the Agenda 21 for the Baltic Sea Region (Baltic 21), April 28 2008, Braunschweig, GermanyGoogle Scholar
  7. 7.
    Eilola K, Hansen J, Meier HEM, Myrberg K, Ryabchenko VA, Skogen MD (2011) Eutrophication status report of the North Sea, Skagerrak, Kattegat and the Baltic Sea: years 2001–2005. SMHI, Oceanografi Nr, p 110Google Scholar
  8. 8.
    HELCOM (2010) Ecosystem health of the Baltic Sea 2003–2007: HELCOM initial holistic assessment. Helsinki Commission, Balt. Sea Environ. Proc. No. 122Google Scholar
  9. 9.
    HELCOM (2014) Eutrophication status of the Baltic Sea 2007–2011. A concise thematic assessment. Helsinki Commission, Balt. Sea Environ. Proc. No. 143: 1–41, Download: http://www.helcom.fi/Lists/Publications/BSEP143.pdf
  10. 10.
    Bloem E, Haneklaus S (2017) Report on scenarios of regulatory factors with a view to the P demand in the BSR. BONUS deliverable 3.7. 14pGoogle Scholar
  11. 11.
    Haneklaus S, Schick J, Kratz S, Rückamp D, Schnug E (2016) Variable rate application of manure—gain or pain? Landbauforsch-Appl Agric For Res 66:1–9Google Scholar
  12. 12.
    Schnug E, Haneklaus S (2016) The enigma of fertilizer phosphorus utilization. In: Schnug E, De Kok LJ (eds) Phosphorus in agriculture: 100% zero. Springer, Dordrecht, pp 7–26Google Scholar
  13. 13.
    Haneklaus S, Schnug E (2006) Site specific nutrient management—objectives, current status and future research needs. In: Srinivasan A (ed) Precision farming—a global perspective. Marcel Dekker, New York, pp 91–151Google Scholar
  14. 14.
    Daniel TC, Sharpley AN, Lemunyon JL (1998) Agricultural phosphorus and eutrophication: a symposium overview. J Environ Qual 27:251–257CrossRefGoogle Scholar
  15. 15.
    Sharpley AN, Chapra SC, Wedepohl R, Sims JT (1994) Managing agricultural phosphorus for the protection of surface waters: issue and options. J Environ Qual 23:437–451CrossRefGoogle Scholar
  16. 16.
    Kratz S, Schnug E (2006) Vergleichende Bewertung der Nähr- und Schadstoffgehalte von Düngemitteln und Klärschlämmen. In: Pinnekamp J, Friedrich H (eds) Klärschlammentsorgung: eine Bestandsaufnahme. Siedlungswasser- und Siedlungsabfallwirtschaft Nordrhein-Westfalen 3:357–361Google Scholar
  17. 17.
    Bloem E, Albihn A, Elving J, Hermann L, Lehmann L, Sarvi M, Schaaf T, Schick J, Turtola E, Ylivainio K (2017) Contamination of organic nutrient sources with potentially toxic elements, antibiotics and pathogen microorganisms in relation to P fertilizer potential and treatment options for the production of sustainable fertilizers: A review. Sci Tot Environ 607–608:225–242CrossRefGoogle Scholar
  18. 18.
    Knudsen L, Schnug E (2016) Utilization of phosphorus at farm level in Denmark. In: Schnug E, De Kok LJ (eds) Phosphorus in agriculture: 100% zero. Springer, Dordrecht, pp 215–229Google Scholar
  19. 19.
    Petersen J (2007) Farm test—transport af gylle, Maskiner og planteavl no. 61. https://www.landbrugsinfo.dk/Tvaerfaglige-emner/FarmTest/Maskiner-og-planteavl/Sider/FarmTest__Transport_af_gylle.aspx
  20. 20.
    Poulsen HD (2013) Normtal for husdyrgødning –2013, 33 sider. (updated version from 1st October 2013). http://anis.au.dk/normtal/
  21. 21.
    Greaves J, Hobbs P, Chadwick D, Haygarth P (1999) Prospects for the recovery of phosphorus from animal manures: A review. Environ Technol 20:697–708CrossRefGoogle Scholar
  22. 22.
    Reinhold G (2005) Genau Bilanzieren. Neue Landwirtschaft 12:68–72Google Scholar
  23. 23.
    Bloem E, Kratz S (2016) Organic Xenobiotics. In: Schnug E, De Kok LJ (eds) Phosphorus in agriculture: 100% zero. Springer, Dordrecht, pp 267–307Google Scholar
  24. 24.
    Eurostat (2017) http://ec.europa.eu/eurostat/ (visited on 21 March 2017)
  25. 25.
    Brand S (2011) Nutzung von Klärschlamm als Rohstoffquelle- Aktueller Stand in Deutschland und in der Europäischen Union sowie Perspektiven für die Zukunft (in German) Master Thesis 104pGoogle Scholar
  26. 26.
    Isherwood KF (1998) Good fertilizer practice and balanced fertilization. Proc Int Symp CIEC, Pulawy, Poland, pp 157–170Google Scholar
  27. 27.
    Jürgens K (2008) Vieh oder Tier? Dimensionen des Mensch-Nutztierverhaeltnisses in der heutigen Landwirtschaft. In: Rehberg K-S (ed) Die Natur der Gesellschaft: Verhandlungen des 33. Kongresses der Deutschen Gesellschaft für Soziologie (DGS) in Kassel 2006. Teilband 1 und 2. Campus Verlag, Frankfurt, pp 5129–5144Google Scholar
  28. 28.
    Ekardt F, Holzapfel N, Ulrich AE, Schnug E, Haneklaus S (2011) Legal perspectives on regulating phosphorus fertilisation. Landbauforschung 61:83–92Google Scholar
  29. 29.
    Powers WJ, van Horn HH (2001) Nutritional implications for manure management planning. Appl Engin Agric 17:27–39CrossRefGoogle Scholar
  30. 30.
    Vermeulen S, Steen I, Schnug E (1998) Nutrient balances at the farm level. In: Proceedings 11th international symposium of CIEC “Codes of good fertilizer practice and balanced fertilization”, pp 108–123Google Scholar
  31. 31.
    Mc Bratney AB (2001) Environmental economics & precision agriculture: a simple nitrogen fertilisation example. In: Grenier G and Blackmore S (eds) Proceedings 3rd european conference on precision agriculture, montpellier, France, vol 2, pp 539–543Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Federal Research Centre for Cultivated PlantsJulius Kühn-Institut (JKI), Institute for Crop and Soil ScienceBraunschweigGermany

Personalised recommendations