Advertisement

Phosphorus Fluxes in the Baltic Sea Region

  • Judith SchickEmail author
  • Sylvia Kratz
  • Elke Bloem
  • Ewald Schnug
Chapter
  • 28 Downloads
Part of the Springer Water book series (SPWA)

Abstract

Phosphorus (P) budgets and flows in particular regions or countries are assessed and suitable strategies discussed to identify and improve the P use efficiency in these countries. These strategies will help to reduce P losses, close the P cycles and protect vulnerable waters, such as the Baltic Sea, from further eutrophication. The P budgets and flow analyses show that in most of the Baltic Sea Region (BSR) countries P inputs exceed outputs, and a high amount of P that entered the system is retained, especially within the soils of the agricultural production sector. The continuous accumulation of P in the soil results in excessive P surpluses and increases the risk of P losses and eutrophication in the long run. Various suitable measures to help to minimize these P losses are proposed, including more stringent recycling of wastewater P (communal sewage sludges and their ashes; struvite and related precipitation products from wastewater treatment), biodegradable solid wastes (biowaste compost) and incinerated slaughter residues. However, the commercial implementation depends on the overcoming of considerable obstacles which include the development and implementation of adequate technology, the adjustment of existing and creation of new governmental regulations and promoting social acceptance of the necessary changes. Furthermore, the monitoring of P fluxes needs improvement in order to generate more consistent and comparable results. It is recommended that fluxes are modelled not only on a national but also on a regional scale in order to be able to account for the specific geographical condition of each country. Also, the P status of agricultural soils with its changes over time and some key soil characteristics need to be considered on a sub-national/regional scale to assess the actual risk of P loss via erosion/run-off/leaching from a particular area/region. Finally, P flow analyses should comprise several years to monitor long-term developments and trends in P flows.

Keywords

P fluxes P budgets Nutrient surpluses Baltic sea 

Notes

Acknowledgements

This work resulted from the BONUS project “Phosphorus Recycling of Mixed Substances” (PROMISE) and was supported by BONUS (Art 185), funded jointly by the EU and the national funding institutions Project Management Jülich (PTJ) in Germany, the Ministry of Agriculture and Forestry in Finland (mmm.fi) and the Vinnova in Sweden.

References

  1. 1.
    Svendsen LM, Pyhälä M, Gustafsson B, Sonesten L, Knuutilla S (2015) Inputs of nitrogen and phosphorus to the Baltic Sea. HELCOM core indicator report. Online. [viewed: 23.01.2017], http://helcom.fi/Documents/Baltic%20sea%20trends/Eutrophication/CORE_indicator_nutrient_inputs_1995-2012.pdf
  2. 2.
    Helcom (2012) Fifth baltic sea pollution load compilation (PLC-5). Baltic Sea Environment Proceedings No. 128, 217pGoogle Scholar
  3. 3.
    Schnug E, Sparovek R, Storck W, Jering A, Volkgenannt U (2001) The HELCOM Working Group on Agriculture (WGA). Landbauforschung Völkenrode 1/2(51):5–9Google Scholar
  4. 4.
    Helcom (2013) Copenhagen declaration taking further action to implement the Baltic Sea action plan—reaching good environmental status for a healthy Baltic Sea. Adopted 3 October 2013Google Scholar
  5. 5.
    Granstedt A, Seuri P, Thomsson O (2008) Ecological recycling agriculture to reduce nutrient pollution to the Baltic Sea. J Biol Agric Hortic 26:279–307CrossRefGoogle Scholar
  6. 6.
    Håkanson L, Bryhn AC (2008) Introduction, background and aim. In: Håkanson L, Bryhn AC (eds) Eutrophication of the Baltic Sea. present situation, nutrient transport, processes, remedial strategies. Springer, Berlin, Heidelberg, pp 1–21CrossRefGoogle Scholar
  7. 7.
    Chowdhury RB, Moore GA, Weatherly AJ, Arora M (2014) A review of recent substance flow analyses of phosphorus to identify priority management areas at different geographical scales. Resour Conserv Recycl 83:213–228CrossRefGoogle Scholar
  8. 8.
    Schick J, Kratz S, Bloem E, Schnug E (2017) Report on meta data analysis of P fluxes—Deliverable 3.5 to the BONUS EU Project PROMISE, available online at: https://portal.mtt.fi/portal/page/portal/mtt_en/projects/promise/Publications/Report%20on%20meta%20data%20analysis%20of%20P%20fluxes.pdf. Last access: 23 August 2019
  9. 9.
    Jedelhauser M, Binder CR (2015) Losses and efficiencies of phosphorus on a national level—a comparison of European substance flow analyses. Resour Conserv Recycl 105:294–310CrossRefGoogle Scholar
  10. 10.
    Van Dijk KC, Lesschen JP, Oenema O (2016) Phosphorus flows and balances of the European Union Member States. Sci Total Environ 542:1078–1093 (including online Supplementary Information with additional data)Google Scholar
  11. 11.
    Kremer AM (2013) Methodology and Handbook Eurostat/OECD—Nutrient Budgets—EU-27, Norway, Switzerland. Date last accessed: March 20, 2017 at http://ec.europa.eu/eurostat/documents/2393397/2518760/Nutrient_Budgets_Handbook_(CPSA_AE_109)_corrected3.pdf/4a3647de-da73-4d23-b94b-e2b23844dc31
  12. 12.
    Eurostat (2018) Gross nutrient balance on agricultural land. Eurostat—Agriculture, Forestry and Fisheries—Agriculture—Agricultural Production—Crop Products—Crop Products: Areas and Production- Land Use (1000 ha) Annual data (apro_crop_luse). Eurostat, European Commission, Luxembourg. Last updated 23.08.2018. Date Accessed 04.09.2018 at http://ec.europa.eu/eurostat
  13. 13.
    Gethke-Albinus K (2012) Verfahren zur Gewinnung von Sekundärphosphaten aus flüssigen Stoffströmen und deren Einfluss auf die deutsche Phosphorbilanz. Fakultät für Bauingenieurswesen. PhD. Rheinisch-Westfälische Technische Hochschule Aachen.Google Scholar
  14. 14.
    Klinglmair M, Lemming C, Jensen LS, Rechberger H, Astrup TF, Scheutz C (2015) Phosphorus in Denmark: national and regional anthropogenic flows. Resour Conserv Recycl 105:311–324CrossRefGoogle Scholar
  15. 15.
    Linderholm K, Mattsson JE, Tillmann AM (2012) Phosphorus flows to and from swedish agricultural and food chain. R Swed Acad Sci 41:883–893Google Scholar
  16. 16.
    Kopinski J, Jurga B (2016) Managing phosphorus in polish agriculture—production and environmental aspects. Pol J Environ Stud 25(6):2451–2458CrossRefGoogle Scholar
  17. 17.
    Kratz S, Schick J, Shwiekh R, Schnug E (2014) Abschätzung des Potentials erneuerbarer P-haltiger Rohstoffe in Deutschland zur Substitution rohphosphathaltiger Düngemittel. J Für Kult 66(8):261–275Google Scholar
  18. 18.
    Thüringer Landesanstalt für Landwirtschaft (2006) Berechnung der Großvieheinheiten eines Betriebes. Rechenprogramm für die Ermittlung der Großvieheinheiten und des Viehbesatzes. Online. [viewed: 23.05.2018] www.tll.de/ainfo/prog/gve_0906.xls
  19. 19.
    FAO (2003) Fertilizer use by crop in Poland. Date last accessed 05 April 2017. http://www.fao.org/docrep/005/Y4620E/y4620e00.htm
  20. 20.
    Cocolo G, Curnis S, Hjorth M, Provolo G (2012) Effect of different technologies and animal manures on solid-liquid separation efficiencies. J Agric Eng XLIII(e9):55–64Google Scholar
  21. 21.
    Hjorth M, Christensen KV, Christensen ML, Sommer SG (2010) Solid-liquid separation of animal slurry in theory and practice. A Rev Agron Sustain Dev 30:153–180CrossRefGoogle Scholar
  22. 22.
    Metson GS, Bennett EM, Elser JJ (2012) The role of diet in phosphorus demand. Environ Res Lett 7(2012):044043 (10pp)CrossRefGoogle Scholar
  23. 23.
    Pimentel D, Pimentel M (2003) Sustainability of meat-based and plant-based diets and the environment. Am J Clin Nutr 78:660S–663SCrossRefGoogle Scholar
  24. 24.
    Withers PJA, van Dijk K, Neset TSS, Nesme T, Oenema O, Rubæk GH, Schoumans OF, Smit B, Pellerin S (2015) Stewardship to tackle global phosphorus inefficiency: the case of Europe. Ambio 44(Suppl. 2):S193–S206CrossRefGoogle Scholar
  25. 25.
    Antikainen R, Lemola R, Nousiainen JI, Sokka L, Esala M, Huhtanen P, Rekolainen R (2005) Stocks and flows of nitrogen and phosphorus in the Finnish food production and consumption system. Agr Ecosyst Environ 107:287–305CrossRefGoogle Scholar
  26. 26.
    Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food thought. Glob Environ Change 19:292–305CrossRefGoogle Scholar
  27. 27.
    Cordell D, Schmid-Neset D, Whiteb D, Drangerta J (2009b) Preferred future phosphorus scenarios: a framework for meeting long-term phosphorus needs for global food demand. International Conference on Nutrient Recovery from Wastewater Streams, Vancouver 2009, p 23Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Judith Schick
    • 1
    Email author
  • Sylvia Kratz
    • 1
  • Elke Bloem
    • 1
  • Ewald Schnug
    • 1
  1. 1.Federal Research Center for Cultivated PlantsJulius Kühn-Institut (JKI), Institute for Crop and Soil ScienceBraunschweigGermany

Personalised recommendations