Environmental Quality of Groundwater in Contaminated Areas—Challenges in Eastern Baltic Region

  • Juris BurlakovsEmail author
  • William Hogland
  • Zane Vincevica-Gaile
  • Mait Kriipsalu
  • Maris Klavins
  • Yahya Jani
  • Roy Hendroko Setyobudi
  • Janis Bikse
  • Vasiliy Rud
  • Toomas Tamm
Part of the Springer Water book series (SPWA)


The lack of water in the future will force society to find more sophisticated solutions for treatment and improvement of groundwater wherever it comes from. Contamination of soil and groundwater is a legacy of modern society, prevention of contaminants spread and secondary water reuse options shall be considered. The aim of the book chapter is to give oversight view on problems and challenges linked to groundwater quality in Eastern Baltic region whilst through case studies explaining the practical problems with groundwater monitoring, remediation and overall environmental quality analysis. The reader will get introduced with case studies in industry levels as credibility of scientific fundamentals is higher when practical solutions are shown. Eastern Baltic countries experience cover contamination problems that are mainly of historic origin due to former Soviet military and industrial policy implementation through decades. Short summaries for each case study are given and main conclusions provided in form of recommendations at the very end of the chapter.


The Baltic Sea basin Case studies Contaminated sites Water pollution 



The case study compilation and comprehensive analysis was supported by Baltic Beach Wrack—Conversion of a Nuisance To a Resource and Asset (CONTRA), BAPR “Baltic Phytoremediation” as well as RBR (Reviving Baltic Resilience) Interreg-V-A project, grant No. STHB 02.02.00-22-0092/16 of EU South Baltic Programme 2014–2020. Great thanks to Swedish Institute LASUWAMA project.


  1. 1.
    Hogland M, Burlakovs J, Celma G, Vincevica-Gaile Z, Hogland W (2018) Preliminary analysis of elements in water supply sludge at Ronneholms Mosse fields, southern Sweden. In: SGEM2012 Conference Proceedings, vol 1.4, pp 111–118Google Scholar
  2. 2.
    Carson R (1965) Silent spring. Chapman & Hall, LondonGoogle Scholar
  3. 3.
    Juhna T, Klavins M (2001) Water-quality changes in Latvia and Riga 1980–2000: possibilities and problems. AMBIO J Human Environ 30(4):306–315CrossRefGoogle Scholar
  4. 4.
    Klavins M, Rodinovs V, Kokorite I (2002) Aquatic chemistry of surface waters of Latvia. University of Latvia, RigaGoogle Scholar
  5. 5.
    Burlakovs J, Vircavs M (2011) Possible applications of soil remediation technologies in Latvia. Environ Clim Technol 13(7):46–53Google Scholar
  6. 6.
    Lee SM, Laldawngliana C, Tiwari D (2012) Iron oxide nano-particles immobilized- sand material in the treatment of Cu(II), Cd(II) and Pb(II) contaminated wastewaters. Chem Eng J 195–196:103–111CrossRefGoogle Scholar
  7. 7.
    Vanheusden B (2009) Recent development in European policy regarding brownfield remediation. Environ Pract 11(4):256–262CrossRefGoogle Scholar
  8. 8.
    Burlakovs J (2015) Heavy metals contamination remediation with soil amendments. Dissertation thesis, University of Latvia, RigaGoogle Scholar
  9. 9.
    Reddy KR, Adams JF, Richardson C (1999) Potential technologies for remediation of brownfield. Pract Periodical Hazard Toxic Radioactive Waste Manage 3(2):61–68CrossRefGoogle Scholar
  10. 10.
    Burlakovs J, Jani Y, Kriipsalu M, Vincevica-Gaile Z, Kaczala F, Celma G, Ozola R, Rozina L, Rudovica V, Hogland M, Viksna A, Pehme KM, Hogland W, Klavins M (2018) On the way to `Zero Waste` management: Recovery potential of elements, including rare earth elements, from fine fraction of waste. J Clean Prod 186:81–90CrossRefGoogle Scholar
  11. 11.
    Directive 2006/12/EC of the European Parliament and of the Council of 5 April 2006 on waste. Official Journal of the European Union, L114, pp 9–21Google Scholar
  12. 12.
    Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Union, L327, pp 1–72Google Scholar
  13. 13.
    Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Official Journal of the European Union, L372, pp 19–31Google Scholar
  14. 14.
    EURODEMO (2018) Accessed on 01 Aug 2019
  15. 15.
    Critto A, Cantarella L, Carlon C, Giove S, Petrzzelli G, Marcomini A (2006) Decision support-oriented selection of remediation technologies to rehabilitate contaminated sites. Integr Environ Assess Manage 2(3):273–285Google Scholar
  16. 16.
    Burlakovs J, Klavins M, Ernsteins R, Ruskulis A (2013) Contamination in industrial sites and environmental management in Latvia. Proc World Acad Sci Engi Technol 76:463–468Google Scholar
  17. 17.
    Burlakovs J, Kaczala F, Stapkevica M, Rudovica V, Orupõld K, Vincevica-Gaile Z, Bhatnagar A, Kriipsalu M, Hogland M, Hogland W, Klavins M (2016) Mobility of metals and valorization of sorted fine fraction of waste after landfill excavation. Waste Biomass Valorization 7:593–602CrossRefGoogle Scholar
  18. 18.
    Burlakovs J, Kriipsalu M, Arina D, Kaczala F, Shmarin S, Denafas G, Hogland W (2013) Former dump sites and the landfill mining perspectives in Baltic countries and Sweden: the status. In: SGEM2013 Conference Proceedings, vol 1, pp 485–492Google Scholar
  19. 19.
    Klavins M, Rodinov V, Cimdins P, Klavina I, Purite M, Druvietis I (1996) Well water quality in Latvia. Int J Environ Stud 50(1):41–50CrossRefGoogle Scholar
  20. 20.
    Bottero JY, Auffan M, Borschnek D, Chaurand P, Labille J, Levard C, Masion A, Tella M, Rose J, Wiesner MR (2015) Nanotechnology, global development in the frame of environmental risk forecasting. A necessity of interdisciplinary researches. Comptes Rendus Geosci 347(1):35–42CrossRefGoogle Scholar
  21. 21.
    Burlakovs J, Kriipsalu M, Porshnov D, Jani Y, Ozols V, Pehme K-M, Rudovica V, Grinfelde I, Pilecka J, Vincevica-Gaile Z, Turkadze T, Hoglan W, Klavins M (2019) Gateway of landfilled plastic waste towards circular economy in Europe. Separations 6(2):25CrossRefGoogle Scholar
  22. 22.
    Hogland M, Arina D, Kriipsalu M, Jani Y, Kaczala F, Salomão AL, Orupõld K, Pehme KM, Rudovica V, Denafas G, Burlakovs J, Vincevica-Gaile Z, Hogland W (2018) Remarks on four novel landfill mining case studies in Estonia and Sweden. J Mater Cycles Waste Manage 20(2):1355–1363CrossRefGoogle Scholar
  23. 23.
    Klaine SJ, Koelmans AA, Horne N, Carley S, Handy RD, Kapustka L (2012) Paradigms to assess the environmental impact of manufactured nanomaterials. Environ Toxicol Chem 31:3–14CrossRefGoogle Scholar
  24. 24.
    Tolaymat T, El Badawy A, Sequeira R, Genaidy A (2015) An integrated science-based methodology to assess potential risks and implications of engineered nanomaterials. J Hazard Mater 298:270–281CrossRefGoogle Scholar
  25. 25.
    Mitrano DM, Motellier S, Clavaguera S, Nowack B (2015) Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ Int 77:132–147CrossRefGoogle Scholar
  26. 26.
    Burlakovs J, Kriipsalu M, Klavins M, Bhatnagar A, Vincevica-Gaile Z, Stenis J, Jani Y, Mykhaylenko V, Denafas G, Turkadze T, Hogland M, Rudovica V, Kaczala F, Møller Rosendal R, Hogland W (2017) Paradigms on landfill mining: from dump site scavenging to ecosystem services revitalization. Resour Conserv Recycl 123:73–84CrossRefGoogle Scholar
  27. 27.
    Hincapie I, Caballero-Guzman A, Hiltbrunner D, Nowack B (2015) Use of engineered nanomaterials in the construction industry with specific emphasis on paints and their flows in construction and demolition waste in Switzerland. Waste Manag 43:398–406CrossRefGoogle Scholar
  28. 28.
    Wang Y, Kalinina A, Sun T, Nowack B (2016) Probabilistic modeling of the flows and environmental risks of nano-silica. Sci Total Environ 545–546:67–76CrossRefGoogle Scholar
  29. 29.
    Moghaddasi S, Khoshgoftarmanesh AH, Karimzadeh F (2015) Fate and effect of tire rubber ash nano-particles (RANPs) in cucumber. Ecotoxicol Environ Saf 115:137–143CrossRefGoogle Scholar
  30. 30.
    Rajarao R, Farzan AR, Khanna R, Sahajwalla V (2015) Synthesis of SiC/Si3N4 nanocomposite by using automotive waste tyres as resource. J Indus Eng Chem 29:35–38CrossRefGoogle Scholar
  31. 31.
    Patil SS, Utkarsha U, Shedbalkar B, Truskewycz A, Chopade BA, Ball AS (2016) Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environ Technol Innov 5:10–21CrossRefGoogle Scholar
  32. 32.
    Burlakovs J, Gorbunovs E (2012) Contamination problems in former military areas: case study in Riga. In: Proceedings of Conference Research for Rural Engineering, vol 2, pp 129–134Google Scholar
  33. 33.
    Burlakovs J, Kasparinskis R, Klavins M (2012) Leaching of contamination from stabilization/solidification remediated soils of different texture. Environ Clim Technol 9:12–16Google Scholar
  34. 34.
    Burlakovs J, Purmalis O (2017) Reviving prospects for lake restoration-investigating the geochemistry of lake Aluksne sediments. Res Rural Dev 23:145–152Google Scholar
  35. 35.
    Burlakovs J, Vircavs M (2012) Heavy metal remediation technologies in Latvia: possible applications and preliminary case study results. Ecol Chem Eng S 19(4):489–664Google Scholar
  36. 36.
    RTU VMC (2017) Accessed on 01 Aug 2019
  37. 37.
    Burlakovs J, Ruskulis A (2012) Environmental situation in surroundings of Incukalns goudron ponds and threats to groundwater. In: Proceedings of the 70th Conference of the University of Latvia, Riga, LatviaGoogle Scholar
  38. 38.
    Burlakovs J, Vircavs M (2012) Waste dumps in Latvia: former landfilling, consequences and possible re-cultivation. Chem J Moldova 7(1):83–90Google Scholar
  39. 39.
    Burlakovs J (2012) Dumps in Latvia: preliminary research and remediation. In: SGEM2012 Conference Proceedings, vol 2, p 55–62Google Scholar
  40. 40.
    Burlakovs J (2008) Groundwater sampling for monitoring purposes: Case studies in Latvia. In: SGEM2008 Conference Proceedings, vol 1, pp 687–690Google Scholar
  41. 41.
    Krauklis A, Ozola R, Burlakovs J, Rugele K, Kirillov K, Trubaca-Boginska A, Rubenis K, Stepanova V, Klavins M (2017) FeOOH and Mn8O10Cl3 modified zeolites for As(V) removal in aqueous medium. J Chem Technol Biotechnol 92(8):1948–1960CrossRefGoogle Scholar
  42. 42.
    Ozola R, Krauklis A, Leitietis M, Burlakovs J, Vircava I, Ansone-Bertina L, Bhatnagar A, Klavins M (2019) FeOOH-modified sorbents for arsenic removal from aqueous solutions. Environ Technol Innov 13:364–372CrossRefGoogle Scholar
  43. 43.
    Valujeva K, Burlakovs J, Grinfelde I, Pilecka J, Jani Y, Hogland W (2018) Phytoremediation as tool for prevention of contaminant flow to hydrological systems. Res Rural Dev 24:188–194CrossRefGoogle Scholar
  44. 44.
    Ferguson G, Gleeson T (2012) Vulnerability of coastal aquifers to groundwater use and climate change. Nat Clim Change 2(5):342–345CrossRefGoogle Scholar
  45. 45.
    Dzilna IL (1970) Resources and dynamics of groundwaters in the middle Baltic area. Zinatne, RigaGoogle Scholar
  46. 46.
    Semjonovs I (1997) Hydrological background for protection of groundwaters. VARAM, RigaGoogle Scholar
  47. 47.
    Levina N, Levins I (2001) Evaluation of Liepaja city centralized water supply sources. State Geological Service, RigaGoogle Scholar
  48. 48.
    Seglins M, Levina N (2001) Assessment of Liepaja city centralized water supply sources. State Geological Service, RigaGoogle Scholar
  49. 49.
    Geoconsultants (2007) Site reports on hydrogeological investigations at Otaņķi and Aistere. Geoconsultants Ltd., RigaGoogle Scholar
  50. 50.
    Water Liepaja (2010) Reports on exploration and monitoring wells of centralized water prospects at Otaņķi and Aistere. Liepaja Water Ltd., LiepajaGoogle Scholar
  51. 51.
    Bikse J, Retike I (2018) An approach to delineate groundwater bodies at risk: seawater intrusion in Liepāja (Latvia). In: E3S Web of Conferences, vol 54, p 00003CrossRefGoogle Scholar
  52. 52.
    Retike I, Bikse J (2018) New data on seawater intrusion in Liepaja (Latvia) and methodology for establishing background levels and threshold values in groundwater body at risk F5. In: E3S Web of Conferences, vol 54, p 00027CrossRefGoogle Scholar
  53. 53.
    Burlakovs J, Lacis D (2012) The development trends of groundwater horizon surface depression and sea water intrusion impact in Liepaja city. In: SGEM2012 Conference Proceedings, vol 1, pp 297–302Google Scholar
  54. 54.
    Greenworld (2019) Accessed on 01 Aug 2019
  55. 55.
    Burlakovs J, Klavins M, Osinska L, Purmalis O (2013) The impact of humic substances as remediation agents to the speciation forms of metals in soil. APCBEE Procedia 5:192–196CrossRefGoogle Scholar
  56. 56.
    Valujeva K, Pilecka J, Grinberga L, Grinfelde I, Burlakovs J (2019) Environmental management of remediative and revitalization initiatives in Baltic Sea region. In: SGEM2019 Conference Proceedings, vol 19(5.1), pp 253– 259Google Scholar
  57. 57.
    Bertina L, Krievans M, Burlakovs J, Lapinskis J (2015) Coastal development of Daugavgriva island, located near the Gulf of Riga. In: Proceedings of the Latvian Academy of Sciences, Section B: Natural, Exact & Applied Sciences, vol 69(6), pp 290–298Google Scholar
  58. 58.
    Bhatnagar A, Kaczala F, Burlakovs J, Kriipsalu M, Hogland M, Hogland W (2017) Hunting for valuables from landfills and assessing their market opportunities—a case study with Kudjape landfill in Estonia. Waste Manage Res 35(6):627–635CrossRefGoogle Scholar
  59. 59.
    Lombi E, Wenzel WW, Adriano DC (1998) Soil contamination, risk reduction and remediation. Land Contam Reclam 6(4):183–197Google Scholar
  60. 60.
    Burlakovs J, Purmalis O, Krievans M, Jani Y (2016) Ground-penetrating radar (GPR) geoenvironmental screening in lakes of Latvia: challenges and outcomes. Near Surf Geosci 22P1:14Google Scholar
  61. 61.
    Burlakovs J, Janovskis R, Stankevica K, Hassan I, Lacis S (2014) Removal of heavy metals from contaminated soils by electrokinetic remediation. Res Rural Dev 2:122–126Google Scholar
  62. 62.
    Standard ISO 17294-2:2002 Water quality—application of ICP-MS—Part 2: Determination of 62 elementsGoogle Scholar
  63. 63.
    Standard NEN 6966:2003 Analyses of 30 selected elements—Atomic emission spectrometry with inductively coupled plasmaGoogle Scholar
  64. 64.
    Standard BS EN 12457-2:2002 Characterization of waste. Leaching. Compliance test for leaching of granular waste materials and sludgesGoogle Scholar
  65. 65.
    Shi C, Fernandez-Jimenez A (2006) Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. J Hazard Mater B137:1656–1663CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Juris Burlakovs
    • 1
    • 2
    Email author
  • William Hogland
    • 1
  • Zane Vincevica-Gaile
    • 3
  • Mait Kriipsalu
    • 2
    • 3
  • Maris Klavins
    • 3
  • Yahya Jani
    • 1
  • Roy Hendroko Setyobudi
    • 4
  • Janis Bikse
    • 3
  • Vasiliy Rud
    • 5
  • Toomas Tamm
    • 2
  1. 1.Department of Biology and Environmental ScienceLinnaeus UniversityKalmarSweden
  2. 2.Department of Water ManagementEstonian University of Life SciencesTartuEstonia
  3. 3.Department of Environmental ScienceUniversity of LatviaRigaLatvia
  4. 4.Waste Laboratory-University of Muhammadiyah MalangMalangIndonesia
  5. 5.State Scientific Institution “All-Russian Research Institute of Phytopathology”, Russian Agricultural Academy” (ARRIP)OdintsovoRussia

Personalised recommendations