Advertisement

Update, Conclusions, and Recommendations for “Water Resources Quality and Management in Baltic Sea Countries”

  • Abdelazim M. NegmEmail author
  • El-Sayed E. Omran
  • Katarzyna Kubiak-Wójcicka
  • Martina Zelenakova
Chapter
  • 25 Downloads
Part of the Springer Water book series (SPWA)

Abstract

This chapter sheds light on the book’s main findings and recommendations of the chapters presented in the book. In addition, an update is made from the recent published results of research work on quality and management of water resources in Baltic Sea Countries. Additionally, a set of recommendations for future research work is pointed out to direct future research towards water resources in Baltic Sea Countries. Additionally, we added a special chapter to the conclusions section on “ Estonian Wetlands and the Water Framework Directive” due to its uniqueness nature.

Keywords

Water resources Management Contaminant Groundwater Constructed wetlands Water bodies Baltic Sea countries Latvia Germany Russia Estonia Water quality 

References

  1. 1.
    Ahlhorn F, Bormann H (2015) Risiko oder Sicherheit: Entwicklungsmöglichkeiten des Hochwasserschutzes im Küstenraum. Wasser und Abfall 17(6):26–30CrossRefGoogle Scholar
  2. 2.
    Ahlhorn F, Kebschull J, Bormann H (2018) Risikowahrnehmung und Informationsbedarfe der Bevölkerung über die Auswirkungen des Klimawandels auf Hochwasser und Sturmfluten. Wasser und Abfall 20(11):44–51CrossRefGoogle Scholar
  3. 3.
    Ahlhorn F, Meyerdirks J (2019) Multifunktionale Küstenschutzräume im Rahmen eines Küstenrisikomanagements. Wasser und Abfall 21(3–4) (in press)CrossRefGoogle Scholar
  4. 4.
    Ahlvik L, Ekholm P, Hyytiäinen K, Pitkänen H (2014) An economic-ecological model to evaluate impacts of nutrient abatement in the Baltic Sea. Environ Model Softw 55:164–175CrossRefGoogle Scholar
  5. 5.
    Aruväli A (2018) Üleujutusega seotud riskide hindamine. Ajakohastamine (Assessment of flood risks. Updating). Water Department, Ministry of the Environment, Estonia. N.p., n.d. Web. 1 Jul. 2019. https://www.envir.ee/sites/default/files/uleujutusega_seotud_riskide_hinnang3.p
  6. 6.
    Aruväli A (2019) Üleujutusohupiirkonna ja üleujutusega seotud riskipiirkonna kaardid. Ajakohastamine. (Flood risk area and flood maps. Updating). Water Department, Ministry of the Environment, Estonia. N.p., n.d. Web. 7 Oct. 2019. https://www.envir.ee/sites/default/files/aruanne_mai2019.pdf
  7. 7.
    Berbel J, Borrego-Marin M, Exposito A, Giannoccaro G, Montilla-Lopez N, Roseta-Palma C (2019) Analysis of irrigation water tariffs and taxes in Europe. Water Policy 21(4):806–825CrossRefGoogle Scholar
  8. 8.
    Bloem E, Albihn A, Elving J, Hermann L, Lehmann L, Sarvi M, Schaaf T, Schick J, Turtola E, Ylivainio K (2017) Contamination of organic nutrient sources with potentially toxic elements, antibiotics and pathogen microorganisms in relation to P fertilizer potential and treatment options for the production of sustainable fertilizers: a review. Sci Tot Environ 607–608:225–242CrossRefGoogle Scholar
  9. 9.
    Bormann H (2018) Hydrology of (shallow) coastal regions. In: Ahlhorn F (ed) Integrated coastal zone management. Springer, pp 49–62Google Scholar
  10. 10.
    Burlakovs J (2015) Heavy metals contamination remediation with soil amendments. Dissertation Thesis. University of Latvia, RigaGoogle Scholar
  11. 11.
    Burlakovs J, Jani Y, Kriipsalu M, Vincevica-Gaile Z, Kaczala F, Celma G, Ozola R, Rozina L, Rudovica V, Hogland M, Viksna A, Pehme KM, Hogland W, Klavins M (2018) On the way to ‘Zero Waste’ management: recovery potential of elements, including rare earth elements, from fine fraction of waste. J Clean Prod 186:81–90CrossRefGoogle Scholar
  12. 12.
    Chowdhury RB, Moore GA, Weatherly AJ, Arora M (2014) A review of recent substance flow analyses of phosphorus to identify priority management areas at different geographical scales. Resour Conserv Recycl 83:213–228CrossRefGoogle Scholar
  13. 13.
    CSO (2016) Central Statistical Office, Environment 2016. Statistical Information and Elaborations, Warsaw, Poland. https://stat.gov.pl/en/topics/environment-energy/environment/. Accessed 25 Sept 2019
  14. 14.
    Eamus D, Fu B, Springer AE, Stevens LE (2016) Groundwater dependent ecosystems: classification, identification techniques and threats. In: Jakeman AJ et al (eds) Integrated groundwater management.  https://doi.org/10.1007/978-3-319-23576-9_13CrossRefGoogle Scholar
  15. 15.
    EEA (2017) River floods—European Environment Agency. N.p., n.d. Web. 1 July 2019. https://www.eea.europa.eu/data-and-maps/indicators/river-floods-2/assessment
  16. 16.
    EU Water Framework Directive (2019) Introduction to the EU Water Framework Directive. In: European Commission, Environment. N.p., n.d. Web. 8 Aug. 2019. https://ec.europa.eu/environment/water/water-framework/index_en.html
  17. 17.
    European Commission (2014) Technical Report No. 8. Technical Report on methodologies used for assessing groundwater dependent ecosystems. Common Implementation Strategy for the Water Framework Directive (2000/60/EC)Google Scholar
  18. 18.
    Eurostat (2018) Gross nutrient balance on agricultural land. Eurostat—agriculture, forestry and fisheries—agriculture—agricultural production—crop products—crop products: areas and production- land use (1000 ha) Annual data (apro_crop_luse). Eurostat, European Commission, Luxembourg. Last updated 23.08.2018. Date Accessed 04.09.2018 at http://ec.europa.eu/eurostat
  19. 19.
    Haneklaus S, Schick J, Kratz S, Rückamp D, Schnug E (2016) Variable rate application of manure—gain or pain? Landbauforschung Appl Agri For Res 66:1–9Google Scholar
  20. 20.
    Hasler B, Smart J, Fonnesbech-Wulff A, Andersen H, Thodsen H, Blicher Mathiesen G, Smedberg E, Göke C, Czajkowski M, Was A, Elofsson K, Humborg C, Wolfsberg A, Wulff F (2014) Hydro-economic modelling of cost-effective transboundary water quality management in the Baltic Sea. Water Resour Econ 5:1–23CrossRefGoogle Scholar
  21. 21.
    HELCOM (2013) Climate change in the Baltic Sea Area—HELCOM thematic assessment in 2013. Baltic Sea Environ Proc 137:70pGoogle Scholar
  22. 22.
    Hogland M, Burlakovs J, Celma G, Vincevica-Gaile Z, Hogland W (2018) Preliminary analysis of elements in water supply sludge at Ronneholms Mosse fields, southern Sweden. In: SGEM2012 Conference Proceedings, vol 1.4, pp 111–118Google Scholar
  23. 23.
    Ignar S, Grygoruk M (eds) (2015) Wetlands and water framework directive. Protection, management and climate change. In: Rowiński P (ed-in-chief) GeoPlanet: earth and planetary sciences book series, Springer, p 110 (eBook)Google Scholar
  24. 24.
    Jedelhauser M, Binder CR (2015) Losses and efficiencies of phosphorus on a national level—a comparison of European substance flow analyses. Resour Conserv Recycl 105:294–310CrossRefGoogle Scholar
  25. 25.
    Kiisler S (2019, October 2) Üleujutusega seotud riskide ajakohastatud hinnangu kinnitamine. Keskkonnaministri käskkiri nr 105 (Approval of an updated flood risk assessment. Regulation No. 105 of the Minister of the Environment). N.p., n.d. Web. 7 Oct. 2019. https://www.envir.ee/sites/default/files/hinnang_kaskkiri_lisaga.pdf
  26. 26.
    Kløve B, Kvitsand H, Pitkänen T, Gunnarsdottir M, Gaut S, Gardarsson S, Rossi PM (2017) Overview of groundwater sources and water-supply systems, and associated microbial pollution, in Finland, Norway and Iceland. Hydrogeol J 25(4):1033–1044CrossRefGoogle Scholar
  27. 27.
    Knudsen L, Schnug E (2016) Utilization of phosphorus at farm level in Denmark. In: Schnug E, De Kok LJ (eds) Phosphorus in agriculture: 100% Zero. Springer, Dordrecht, pp 215–229Google Scholar
  28. 28.
    Kremer AM (2013) Methodology and Handbook Eurostat/OECD—Nutrient Budgets—EU-27, Norway, Switzerland. Date last accessed: March 20, 2017 at http://ec.europa.eu/eurostat/documents/2393397/2518760/Nutrient_Budgets_Handbook_(CPSA_AE_109)_corrected3.pdf/4a3647de-da73-4d23-b94b-e2b23844dc31
  29. 29.
    LAWA (2010) Empfehlungen zur Aufstellung von Hochwasserrisikomanagementplänen. Beschlossen auf der 139. LAWA-VV am 25./26. März 2010 in Dresden, GermanyGoogle Scholar
  30. 30.
    MIEME (2015) Werk aan de delta. De beslissingne om Nederland veilig en leefbaar te houden. Ministry of Infrastructure and Environment & Ministry of Economy. The HagueGoogle Scholar
  31. 31.
    Nainggolan D, Hasler B, Andersen H, Gyldenkærne S, Termansen M (2018) Water quality management and climate change mitigation: cost-effectiveness of joint implementation in the Baltic Sea Region. Ecol Econ 144:12–26CrossRefGoogle Scholar
  32. 32.
    Report on climate peculiarities in the Russian Federation in 2016 (2017). Moscow, 70p. Available on the website: http://climatechange.igce.ru/)
  33. 33.
    Republic of Latvia Cabinet Regulation No. 384, 2017. Regulations Regarding the Management and Registration of Decentralized Sewerage Systems. Latvijas Vēstnesis, vol 129, issue no 5956Google Scholar
  34. 34.
    Rohde MM, Froend R, Howard J (2017) A global synthesis of managing groundwater dependent ecosystems under sustainable groundwater policy. Groundwater 55:293–301.  https://doi.org/10.1111/gwat.12511CrossRefGoogle Scholar
  35. 35.
    Rosentau A, Bennike O, Uscinowicz S, Miotk-Szpiganowicz G (2017) The Baltic Sea Basin. Submerged landscapes of the European continental shelf: quaternary paleoenvironments, pp 103–133CrossRefGoogle Scholar
  36. 36.
    Schnug E, Haneklaus S (2016) The Enigma of fertilizer phosphorus utilization. In: Schnug E, De Kok LJ (eds) Phosphorus in agriculture: 100% zero. Springer, Dordrecht, pp 7–26Google Scholar
  37. 37.
    Serinaldi F, Loecker F, Kilsby CG, Bast H (2018) Flood propagation and duration in large river basins: a data-driven analysis for reinsurance purposes. Nat Hazards 94(1):71–92.  https://doi.org/10.1007/s11069-018-3374-0CrossRefGoogle Scholar
  38. 38.
    State limited Liability Company “Latvian Environment, Geology and Meteorology Centre” (2017) Meteorological observation data. Available at https://www.meteo.lv/en/meteorologija-datu-meklesana/?nid=924
  39. 39.
    State limited Liability Company “Latvian Environment, Geology and Meteorology Centre” (2018) Meteorological observation data. Available at https://www.meteo.lv/en/meteorologija-datu-meklesana/?nid=924
  40. 40.
    Terasmaa J, Bartout P, Marzecova A, Touchart L, Vandel E, Koff T, Choffel Q, Kapanen G, Maleval V, Vainu M, Millot C, Qsair Z, Al Domany M (2019) A quantitative assessment of the contribution of small standing water bodies to the European waterscapes—case of Estonia and France. Heliyon (in press)Google Scholar
  41. 41.
    The Administration of Latvian Environmental Protection Fund (2017) Recommendations for the construction and operation of wastewater storage and local treatment plants, 20p (in Latvian)Google Scholar
  42. 42.
    UN General Assembly (2015) Transforming our world: the 2030 Agenda for Sustainable Development. 21 October 2015, A/RES/70/1Google Scholar
  43. 43.
    Van Dijk KC, Lesschen JP, Oenema O (2016) Phosphorus flows and balances of the European Union Member States. Sci Total Environ 542: 1078–1093 (including online Supplementary Information with additional data)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Abdelazim M. Negm
    • 1
    Email author
  • El-Sayed E. Omran
    • 2
    • 3
  • Katarzyna Kubiak-Wójcicka
    • 4
  • Martina Zelenakova
    • 5
  1. 1.Water and Water Structures Engineering Department, Faculty of EngineeringZagazig UniversityZagazigEgypt
  2. 2.Soil and Water Department, Faculty of AgricultureSuez Canal UniversityIsmailiaEgypt
  3. 3.Institute of African Research and Studies, Nile Basin Countries. Aswan UniversityAswanEgypt
  4. 4.Faculty of Earth Sciences and Spatial Management, Department of Hydrology and Water ManagementNicolaus Copernicus UniversityToruńPoland
  5. 5.Department of Environmental Engineering, Faculty of Civil EngineeringTechnical University in KošiceKošiceSlovakia

Personalised recommendations