Microscopic Black Holes

  • Jorge OvalleEmail author
  • Roberto Casadio
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


There are general arguments based on quantum physics supporting the idea that classical black holes of the kind predicted by GR can only exist with a mass significantly larger than the Planck scale \({M_{\text {P}}}=\sqrt{\hbar {c/G} _\mathrm{N}}\) (where c is the speed of light, \(G_\mathrm{N}\) is again Newton’s constant and \(\hbar \) the reduced Planck constant).


  1. 1.
    L. Randall, R. Sundrum, A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370 (1999)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    L. Randall, R. Sundrum, An alternative to compactification. Phys. Rev. Lett. 83, 4690 (1999)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    M. Cavaglia, Black hole and brane production in TeV gravity: a review. Int. J. Mod. Phys. A 18, 1843 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    R. Casadio, L. Mazzacurati, Bulk shape of brane world black holes. Mod. Phys. Lett. A 18 651–660 (2003). R. Casadio, O. Micu, Exploring the bulk of tidal charged micro-black holes. Phys. Rev. D 81 104024 (2010)Google Scholar
  5. 5.
    R. Whisker, Braneworld Black Holes, Ph.D Thesis, arXiv:0810.1534 [gr-qc]. R. Gregory, Braneworld Black Holes. Lecture Notes in Physics, vol. 769 (2009), p. 259
  6. 6.
    P. Figueras, T. Wiseman, Gravity and large black holes in Randall-Sundrum II braneworlds. Phys. Rev. Lett. 107, 081101 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    D.-C. Dai, D. Stojkovic, Analytic solution for a static black hole in RSII model. Phys. Lett. B 704, 354 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    S. Abdolrahimi, C. Cattoen, D.N. Page, S. Yaghoobpour-Tari, Large Randall-Sundrum II black holes. Phys. Lett. B 720, 405 (2013)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Marco Bruni, Cristiano Germani, Roy Maartens, Gravitational collapse on the brane: a no-go theorem. Phys. Rev. Lett. 87, 231302 (2001)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Govender, N. Dadhich, Collapsing sphere on the brane radiates. Phys. Lett. B 538, 233238 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    S.W. Hawking, Black hole explosions. Nature 248, 30 (1974); Particle creation by black holes. Comm. Math. Phys. 43, 199 (1975)Google Scholar
  12. 12.
    J. Garriga, T. Tanaka, Gravity in the Randall-Sundrum brane world. Phys. Rev. Lett. 84, 2778 (2000)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    R. Casadio, C. Germani, Gravitational collapse and black hole evolution: do holographic black holes eventually ‘anti-evaporate’? Prog. Theor. Phys. 114, 23–56 (2005)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    N. Dadhich, R. Maartens, P. Papadopoulos, V. Rezania, Black holes on the brane. Phys. Lett. B 487, 1–6 (2000)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    R. Casadio, J. Ovalle, Brane-world stars and (microscopic) black holes. Phys. Lett. B 715, 251 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    G.L. Alberghi, R. Casadio, O. Micu, A. Orlandi, Brane-world black holes and the scale of gravity. JHEP 1109, 023 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    R. Arnowitt, S. Deser, C.W. Misner, Finite self-energy of classical point particles. Phys. Rev. Lett. 4, 375 (1960)ADSCrossRefGoogle Scholar
  18. 18.
    R. Casadio, R. Garattini, F. Scardigli, Point-like sources and the scale of quantum gravity. Phys. Lett. B 679, 156 (2009)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of PhysicsSilesian University in OpavaOpavaCzech Republic
  2. 2.Dipartimento di Fisica e AstronomiaUniversity of BolognaBolognaItaly

Personalised recommendations