Parallel Online Algorithms for the Bin Packing Problem

  • Sándor P. Fekete
  • Jonas Grosse-Holz
  • Phillip Keldenich
  • Arne SchmidtEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11926)


We study parallel online algorithms: For some fixed integer k, a collective of k parallel processes that perform online decisions on the same sequence of events forms a k-copy algorithm. For any given time and input sequence, the overall performance is determined by the best of the k individual total results. Problems of this type have been considered for online makespan minimization; they are also related to optimization with advice on future events, i.e., a number of bits available in advance.

We develop Predictive Harmonic\(_3\) (PH3), a relatively simple family of k-copy algorithms for the online Bin Packing Problem, whose joint competitive factor converges to 1.5 for increasing k. In particular, we show that \(k=6\) suffices to guarantee a factor of 1.5714 for PH3, which is better than 1.57829, the performance of the best known 1-copy algorithm Advanced Harmonic, while \(k=11\) suffices to achieve a factor of 1.5406, beating the known lower bound of 1.54278 for a single online algorithm. In the context of online optimization with advice, our approach implies that 4 bits suffice to achieve a factor better than this bound of 1.54278, which is considerably less than the previous bound of 15 bits.


Online algorithms Bin packing Competitive analysis 


  1. 1.
    Albers, S., Hellwig, M.: Online makespan minimization with parallel schedules. Algorithmica 78(2), 492–520 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Angelopoulos, S., Dürr, C., Kamali, S., Renault, M., Rosén, A.: Online bin packing with advice of small size. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 40–53. Springer, Cham (2015). Scholar
  3. 3.
    Balogh, J., Békési, J., Dósa, G., Epstein, L., Levin, A.: A new and improved algorithm for online bin packing. In: 26th Annual European Symposium on Algorithms (ESA 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)Google Scholar
  4. 4.
    Balogh, J., Békési, J., Dósa, G., Epstein, L., Levin, A.: A new lower bound for classic online bin packing. arXiv preprint arXiv:1807.05554 (2018). (To appear at 17th Workshop on Approximation and Online Algorithms (WAOA))
  5. 5.
    Boyar, J., Favrholdt, L.M., Kudahl, C., Larsen, K.S., Mikkelsen, J.W.: Online algorithms with advice: a survey. ACM Comput. Surv. (CSUR) 50(2), 19 (2017)CrossRefGoogle Scholar
  6. 6.
    Boyar, J., Kamali, S., Larsen, K.S., López-Ortiz, A.: On the list update problem with advice. In: 8th Conference on Language and Automata Theory and Applications (LATA), pp. 210–221 (2014)CrossRefGoogle Scholar
  7. 7.
    Boyar, J., Kamali, S., Larsen, K.S., López-Ortiz, A.: Online bin packing with advice. Algorithmica 74(1), 507–527 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brown, D.M.: A lower bound for on-line one-dimensional bin packing algorithms. Technical report (1979)Google Scholar
  9. 9.
    Csirik, J., Woeginger, G.J.: On-line packing and covering problems. In: Fiat, A., Woeginger, G.J. (eds.) Online Algorithms: The State of the Art. LNCS, vol. 1442, pp. 147–177. Springer, Heidelberg (1998). Scholar
  10. 10.
    Fekete, S.P., Grosse-Holz, J., Keldenich, P., Schmidt, A.: Parallel online algorithms for the bin packing problem (2019). arXiv preprint (1910.03249)Google Scholar
  11. 11.
    Halldórsson, M.M., Iwama, K., Miyazaki, S., Taketomi, S.: Online independent sets. Theor. Comput. Sci. 289(2), 953–962 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Heydrich, S., van Stee, R.: Beating the harmonic lower bound for online bin packing. In: The 43rd International Colloquium on Automata, Languages, and Programming (ICALP), pp. 41:1–41:14 (2016)Google Scholar
  13. 13.
    Johnson, D.S.: Fast algorithms for bin packing. J. Comput. Syst. Sci. 8(3), 272–314 (1974)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kamali, S., Ortiz, A.L.: Better compression through better list update algorithms. In: 2014 Data Compression Conference, pp. 372–381 (2014)Google Scholar
  15. 15.
    Lee, C.C., Lee, D.T.: A simple on-line bin-packing algorithm. J. ACM 32, 562–572 (1985)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Liang, F.M.: A lower bound for on-line bin packing. Inf. Process. Lett. 10(2), 76–79 (1980)MathSciNetCrossRefGoogle Scholar
  17. 17.
    López-Ortiz, A., Schuierer, S.: On-line parallel heuristics, processor scheduling and robot searching under the competitive framework. Theor. Comput. Sci. 310(1–3), 527–537 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Renault, M.P., Rosén, A., van Stee, R.: Online algorithms with advice for bin packing and scheduling problems. Theor. Comput. Sci. 600, 155–170 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    van Vliet, A.: An improved lower bound for on-line bin packing algorithms. Inf. Proc. Lett. 43(5), 277–284 (1992)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Yao, A.C.-C.: New algorithms for bin packing. J. ACM 27(2), 207–227 (1980)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zhao, X., Shen, H.: On the advice complexity of one-dimensional online bin packing. In: Chen, J., Hopcroft, J.E., Wang, J. (eds.) FAW 2014. LNCS, vol. 8497, pp. 320–329. Springer, Cham (2014). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sándor P. Fekete
    • 1
  • Jonas Grosse-Holz
    • 1
  • Phillip Keldenich
    • 1
  • Arne Schmidt
    • 1
    Email author
  1. 1.Department of Computer ScienceTU BraunschweigBraunschweigGermany

Personalised recommendations