Advertisement

Parallel Online Algorithms for the Bin Packing Problem

  • Sándor P. Fekete
  • Jonas Grosse-Holz
  • Phillip Keldenich
  • Arne SchmidtEmail author
Conference paper
  • 85 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11926)

Abstract

We study parallel online algorithms: For some fixed integer k, a collective of k parallel processes that perform online decisions on the same sequence of events forms a k-copy algorithm. For any given time and input sequence, the overall performance is determined by the best of the k individual total results. Problems of this type have been considered for online makespan minimization; they are also related to optimization with advice on future events, i.e., a number of bits available in advance.

We develop Predictive Harmonic\(_3\) (PH3), a relatively simple family of k-copy algorithms for the online Bin Packing Problem, whose joint competitive factor converges to 1.5 for increasing k. In particular, we show that \(k=6\) suffices to guarantee a factor of 1.5714 for PH3, which is better than 1.57829, the performance of the best known 1-copy algorithm Advanced Harmonic, while \(k=11\) suffices to achieve a factor of 1.5406, beating the known lower bound of 1.54278 for a single online algorithm. In the context of online optimization with advice, our approach implies that 4 bits suffice to achieve a factor better than this bound of 1.54278, which is considerably less than the previous bound of 15 bits.

Keywords

Online algorithms Bin packing Competitive analysis 

References

  1. 1.
    Albers, S., Hellwig, M.: Online makespan minimization with parallel schedules. Algorithmica 78(2), 492–520 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Angelopoulos, S., Dürr, C., Kamali, S., Renault, M., Rosén, A.: Online bin packing with advice of small size. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 40–53. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21840-3_4CrossRefGoogle Scholar
  3. 3.
    Balogh, J., Békési, J., Dósa, G., Epstein, L., Levin, A.: A new and improved algorithm for online bin packing. In: 26th Annual European Symposium on Algorithms (ESA 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)Google Scholar
  4. 4.
    Balogh, J., Békési, J., Dósa, G., Epstein, L., Levin, A.: A new lower bound for classic online bin packing. arXiv preprint arXiv:1807.05554 (2018). (To appear at 17th Workshop on Approximation and Online Algorithms (WAOA))
  5. 5.
    Boyar, J., Favrholdt, L.M., Kudahl, C., Larsen, K.S., Mikkelsen, J.W.: Online algorithms with advice: a survey. ACM Comput. Surv. (CSUR) 50(2), 19 (2017)CrossRefGoogle Scholar
  6. 6.
    Boyar, J., Kamali, S., Larsen, K.S., López-Ortiz, A.: On the list update problem with advice. In: 8th Conference on Language and Automata Theory and Applications (LATA), pp. 210–221 (2014)CrossRefGoogle Scholar
  7. 7.
    Boyar, J., Kamali, S., Larsen, K.S., López-Ortiz, A.: Online bin packing with advice. Algorithmica 74(1), 507–527 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brown, D.M.: A lower bound for on-line one-dimensional bin packing algorithms. Technical report (1979)Google Scholar
  9. 9.
    Csirik, J., Woeginger, G.J.: On-line packing and covering problems. In: Fiat, A., Woeginger, G.J. (eds.) Online Algorithms: The State of the Art. LNCS, vol. 1442, pp. 147–177. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0029568CrossRefGoogle Scholar
  10. 10.
    Fekete, S.P., Grosse-Holz, J., Keldenich, P., Schmidt, A.: Parallel online algorithms for the bin packing problem (2019). arXiv preprint (1910.03249)Google Scholar
  11. 11.
    Halldórsson, M.M., Iwama, K., Miyazaki, S., Taketomi, S.: Online independent sets. Theor. Comput. Sci. 289(2), 953–962 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Heydrich, S., van Stee, R.: Beating the harmonic lower bound for online bin packing. In: The 43rd International Colloquium on Automata, Languages, and Programming (ICALP), pp. 41:1–41:14 (2016)Google Scholar
  13. 13.
    Johnson, D.S.: Fast algorithms for bin packing. J. Comput. Syst. Sci. 8(3), 272–314 (1974)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kamali, S., Ortiz, A.L.: Better compression through better list update algorithms. In: 2014 Data Compression Conference, pp. 372–381 (2014)Google Scholar
  15. 15.
    Lee, C.C., Lee, D.T.: A simple on-line bin-packing algorithm. J. ACM 32, 562–572 (1985)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Liang, F.M.: A lower bound for on-line bin packing. Inf. Process. Lett. 10(2), 76–79 (1980)MathSciNetCrossRefGoogle Scholar
  17. 17.
    López-Ortiz, A., Schuierer, S.: On-line parallel heuristics, processor scheduling and robot searching under the competitive framework. Theor. Comput. Sci. 310(1–3), 527–537 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Renault, M.P., Rosén, A., van Stee, R.: Online algorithms with advice for bin packing and scheduling problems. Theor. Comput. Sci. 600, 155–170 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    van Vliet, A.: An improved lower bound for on-line bin packing algorithms. Inf. Proc. Lett. 43(5), 277–284 (1992)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Yao, A.C.-C.: New algorithms for bin packing. J. ACM 27(2), 207–227 (1980)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zhao, X., Shen, H.: On the advice complexity of one-dimensional online bin packing. In: Chen, J., Hopcroft, J.E., Wang, J. (eds.) FAW 2014. LNCS, vol. 8497, pp. 320–329. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08016-1_29CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sándor P. Fekete
    • 1
  • Jonas Grosse-Holz
    • 1
  • Phillip Keldenich
    • 1
  • Arne Schmidt
    • 1
    Email author
  1. 1.Department of Computer ScienceTU BraunschweigBraunschweigGermany

Personalised recommendations