Radionuclide Imaging of Children

  • Reza ValiEmail author
  • Susan McQuattie
  • Amer Shammas


Although many types of radionuclide studies are similar in adults and children, there is specific consideration to be aware of in the pediatric population. Careful planning and good communication is essential for acquiring an optimum study. Having the appropriate tools, environment, and enough time is of pivotal importance. In addition, it is important to be aware of the normal variances and appropriate thresholds in order to interpret an activity as abnormal in children as compared with adults. In this chapter we review the common nuclear medicine procedures in children, focusing on the indication of the study, patient preparation, dose of the radioactivity, and the interpretation of the studies. Furthermore, common pediatric protocols are also summarized for the quick review. We hope this chapter is useful for learning the practical information nuclear medicine physicians or radiologists need to know for pediatric cases.


  1. 1.
    Stabin MG, Gelfand MJ. Dosimetry of pediatric nuclear medicine procedures. Q J Nucl Med. 1998;42(2):93–112.PubMedGoogle Scholar
  2. 2.
    Gordon I, Piepsz A, Sixt R. Guidelines for standard and diuretic renogram in children; guideline. Eur J Nucl Med Mol Imaging. 2011;38:1175.PubMedGoogle Scholar
  3. 3.
    Shulkin BL, Mandell GA, Cooper JA, et al. Procedure guideline for diuretic renography in children 3.0. J Nucl Med Technol. 2008;36(3):162–8.PubMedGoogle Scholar
  4. 4.
    Chotipanich C, Rubin J, Lin J, Charron M. Clinical follow-up of children with low differential function on diuretic renogram. J Med Assoc Thai. 2007;90(4):754–61.PubMedGoogle Scholar
  5. 5.
    Mandell G, Eggli D, Gilday D, et al. Society of nuclear medicine procedure guideline for renal cortical scintigraphy in children version 3.0. Approved June 20, 2003.Google Scholar
  6. 6.
    Ajdinovic B, Jaukovic L, Krstic Z, Dopuda M. Impact of micturating cystourethrography and DMSA renal scintigraphy on the investigation scheme in children with urinary tract infection. Ann Nucl Med. 2008;22(8):661–5.PubMedGoogle Scholar
  7. 7.
    Hoberman A, Charron M, Hickey RW, Baskin M, Kearney DH, Wald ER. Imaging studies after a first febrile urinary tract infection in young children. N Engl J Med. 2003;348(3):195–202.PubMedGoogle Scholar
  8. 8.
    Lim R. Vesicoureteral reflux and urinary tract infection: evolving practices and current controversies in pediatric imaging. AJR Am J Roentgenol. 2009;192(5):1197–208.PubMedGoogle Scholar
  9. 9.
    Pollet JE, Sharp PF, Smith FW. Radionuclide imaging for vesico-renal reflux using intravenous 99mTc-D.T.P.A. Pediatr Radiol. 1979;8(3):165–7.PubMedGoogle Scholar
  10. 10.
    Gerhold JP, Klingensmith WC III, Kuni CC, et al. Diagnosis of biliary atresia with radionuclide hepatobiliary imaging. Radiology. 1983;146(2):499–504.PubMedGoogle Scholar
  11. 11.
    Warrington JC, Charron M. Pediatric gastrointestinal nuclear medicine. Semin Nucl Med. 2007;37(4):269–85.PubMedGoogle Scholar
  12. 12.
    Donohoe KJ, Maurer AH, Ziessman HA, et al. Procedure guideline for adult solid-meal gastric-emptying study 3.0. J Nucl Med Technol. 2009;37(3):196–200.PubMedGoogle Scholar
  13. 13.
    Fawcett HD, Hayden CK, Adams JC, Swischuk LE. How useful is gastroesophageal reflux scintigraphy in suspected childhood aspiration? Pediatr Radiol. 1988;18(4):311–3.PubMedGoogle Scholar
  14. 14.
    Siegel J, Wu R, Knight L, Zelac R, Stern H, Malmud L. Radiation dose estimates for oral agents used in upper gastrointestinal disease. J Nucl Med. 1983;24:835–37.Google Scholar
  15. 15.
    Baikie G, South MJ, Reddihough DS, et al. Agreement of aspiration tests using barium videofluoroscopy, salivagram, and milk scan in children with cerebral palsy. Dev Med Child Neurol. 2005;47(2):86–93.PubMedGoogle Scholar
  16. 16.
    Sonneville A, Ait-Tahar H, Baulieu F, et al. [Value of esophageal scintigraphy in exploration of a gastro-esophageal reflux in a respiratory patient]. Allerg Immunol 2000;32(5):207–208.Google Scholar
  17. 17.
    Sfakianakis GN, Conway JJ. Detection of ectopic gastric mucosa in Meckel’s diverticulum and in other aberrations by scintigraphy: II. Indications and methods–a 10-year experience. J Nucl Med. 1981;22(8):732–8.PubMedGoogle Scholar
  18. 18.
    Spottswood SE, Pfluger T, Bartold S, et al. SNMMI and EANM Practice Guideline for meckel diverticulum scintigraphy. J Nucl Med Technol. 2014;42(3):163–9.PubMedGoogle Scholar
  19. 19.
    Vali R, Daneman A, McQuattie S, Shammas A. The value of repeat scintigraphy in patients with a high clinical suspicion for Meckel diverticulum after a negative or equivocal first Meckel scan. Pediatr Radiol. 2015;45:1506–14.PubMedGoogle Scholar
  20. 20.
    Gelfand MJ, Parisi MT, Treves ST, Pediatric Nuclear Medicine Dose Reduction Workgroup. Pediatric radiopharmaceutical administered doses: 2010 North American consensus guidelines. J Nucl Med. 2011;52(2):318–22.PubMedGoogle Scholar
  21. 21.
    Lassmann M, Treves ST, EANM/SNMMI Paediatric Dosage Harmonization Working Group. Paediatric radiopharmaceutical administration: harmonization of the 2007 EANM paediatric dosage card (version 1.5.2008) and the 2010 North American consensus guidelines. Eur J Nucl Med Mol Imaging. 2014;41(5):1036–41.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Grant FD. 18F-Fluoride PET and PET/CT in children and young adults. PET Clin. 2014;9(3):287–97.PubMedGoogle Scholar
  23. 23.
    Nadel HR. Pediatric bone scintigraphy update. Semin Nucl Med. 2010;40(1):31–40.PubMedGoogle Scholar
  24. 24.
    De Palma D. Radionuclide studies with bone-seeking radiophamaceuticals in pediatric benign diseases. In: Mansi L, et al., editors. Clinical nuclear medicine in pediatrics. New York, NY: Springer; 2016.Google Scholar
  25. 25.
    Ma JJ, Kang BK, Treves ST. Pediatric musculoskeletal nuclear medicine. Semin Musculoskelet Radiol. 2007;11(4):322–34.PubMedGoogle Scholar
  26. 26.
    De Palma D, Nadel HR, Bar-Sever Z. Skeletal scintigraphy with SPECT/CT in benign pediatric bone conditions. Clin Transl Imag. 2016;4:191.Google Scholar
  27. 27.
    Bybel B, Brunken RC, DiFilippo FP, et al. SPECT/CT imaging: clinical utility of an emerging technology. Radiographics. 2008;28(4):1097–113.PubMedGoogle Scholar
  28. 28.
    Treves ST. Skeletal scintigraphy: general considerations. In: Treves ST, editor. Pediatric nuclear medicine and molecular imaging. 4th ed. New York, NY: Springer; 2014.Google Scholar
  29. 29.
    Faden H, Grossi M. Acute osteomyelitis in children. Reassessment of etiologic agents and their clinical characteristics. Am J Dis Child. 1991;145(1):65–9.PubMedGoogle Scholar
  30. 30.
    Connolly LP, Drubach SA, Connolly SA, et al. Bone. In: Treves ST, editor. Pediatric nuclear medicine/PET. 3rd ed. New York, NY: Springer; 2007.Google Scholar
  31. 31.
    Schauwecker DS. The scintigraphic diagnosis of osteomyelitis. AJR Am J Roentgenol. 1992;158(1):9–18.PubMedGoogle Scholar
  32. 32.
    Pennington WT, Mott MP, Thometz JG, et al. Photopenic bone scan osteomyelitis: a clinical perspective. J Pediatr Orthop. 1999;19(6):695–8.PubMedGoogle Scholar
  33. 33.
    Acikgoz G, Averill L. Chronic recurrent multifocal osteomyelitis: typical patterns of bone involvement in whole-body bone scintigraphy. Nucl Med Commun. 2014;35(10):1097.Google Scholar
  34. 34.
    Connolly LP, Treves ST. Assessing the limping child with skeletal scintigraphy. J Nucl Med. 1998;39(6):1056–61.PubMedGoogle Scholar
  35. 35.
    Drubach LA, Connolly LP, D’Hemecourt PA, et al. Assessment of the clinical significance of asymptomatic lower extremity uptake in young athletes. J Nucl Med. 2001;42(2):209–12.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Sty JR, Wells RG, Conway JJ. Spine pain in children. Semin Nucl Med. 1993;23(4):296–320.PubMedGoogle Scholar
  37. 37.
    Pekindil G, Sarikaya A, Pekindil Y, et al. Lumbosacral transitional vertebral articulation: evaluation by planar and SPECT bone scintigraphy. Nucl Med Commun. 2004;25(1):29–37.PubMedGoogle Scholar
  38. 38.
    Mandelstam SA, Cook D, Fitzgerald M, et al. Complementary use of radiological skeletal survey and bone scintigraphy in detection of bony injuries in suspected child abuse. Arch Dis Child. 2003;88(5):387–90.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Conway JJ, Collins M, Tanz RR, et al. The role of bone scintigraphy in detecting child abuse. Semin Nucl Med. 1993;23(4):321–33.PubMedGoogle Scholar
  40. 40.
    Drubach LA, Johnston PR, Newton AW, et al. Skeletal trauma in child abuse: detection with 18F-NaF PET. Radiology. 2010;255(1):173–81.PubMedGoogle Scholar
  41. 41.
    Villani MF, Falappa P, Pizzoferro M, Toniolo RM, Lembo A, Chiapparelli S, Garganese MC. Role of three-phase bone scintigraphy in paediatric osteoid osteoma eligible for radiofrequency ablation. Nucl Med Commun. 2013;34(7):638–44.PubMedGoogle Scholar
  42. 42.
    Zhibin Y, Quanyong L, Libo C, et al. The role of radionuclide bone scintigraphy in fibrous dysplasia of bone. Clin Nucl Med. 2004;29:177–80.PubMedGoogle Scholar
  43. 43.
    Connolly LP, Drubach LA, Treves ST. Pediatric skeletal scintigraphy. In: Henkin RE, Bova D, Dillehay GL, Karesh SM, Halama JR, Wagner RH, editors. Nuclear medicine. 2nd ed. Philadelphia, PA: Mosby-Elsevier; 2006. p. 1721–44.Google Scholar
  44. 44.
    Stauss J, Hahn K, Mann M, De Palma D. Guidelines for paediatric bone scanning with 99mTc-labelled radiopharmaceuticals and 18F-fluoride. Eur J Nucl Med Mol Imaging. 2010;37(8):1621–8.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Patocka C, Nemeth J. Pulmonary embolism in pediatrics. J Emerg Med. 2012;42(1):105–16.PubMedGoogle Scholar
  46. 46.
    Buck JR, Connors RH, Coon WW, et al. Pulmonary embolism in children. J Pediatr Surg. 1981;16(3):385–91.PubMedGoogle Scholar
  47. 47.
    Brandão LR, Labarque V, Diab Y, et al. Pulmonary embolism in children. Semin Thromb Hemost. 2011;37(7):772–85.PubMedGoogle Scholar
  48. 48.
    Hunt JM, Bull TM. Clinical review of pulmonary embolism: diagnosis, prognosis, and treatment. Med Clin North Am. 2011;95(6):1203–22.PubMedGoogle Scholar
  49. 49.
    Stein EG, Haramati LB, Chamarthy M, Sprayregen S, Davitt MM, Freeman LM. Success of a safe and simple algorithm to reduce use of CT pulmonary angiography in the emergency department. AJR Am J Roentgenol. 2010;194(2):392–7.PubMedGoogle Scholar
  50. 50.
    Ciofetta G, Piepsz A, Roca I, et al. Guidelines for lung scintigraphy in children. Eur J Nucl Med Mol Imaging. 2007;34(9):1518–26.PubMedGoogle Scholar
  51. 51.
    Parker JA, Coleman RE, Grady E, et al. SNM practice guideline for lung scintigraphy 4.0. J Nucl Med Technol. 2012;40(1):57–65.PubMedGoogle Scholar
  52. 52.
    Gottschalk A, Stein PD, Sostman HD, et al. Very low probability interpretation of V/Q lung scans in combination with low probability objective clinical assessment reliably excludes pulmonary embolism: data from PIOPED II. J Nucl Med. 2007;48(9):1411–5.PubMedGoogle Scholar
  53. 53.
    Shammas A, Vali R, Charron M. Pediatric Nuclear Medicine in Acute Care. Semin Nucl Med. 2013;43(2):139–56.PubMedGoogle Scholar
  54. 54.
    Glaser JE, Chamarthy M, Haramati LB, et al. Successful and safe implementation of a trinary interpretation and reporting strategy for V/Q lung scintigraphy. J Nucl Med. 2011;52(10):1508–12.PubMedGoogle Scholar
  55. 55.
    Gelfand MJ, Gruppo RA, Nasser MP. Ventilation-perfusion scintigraphy in children and adolescents is associated with a low rate of indeterminate studies. Clin Nucl Med. 2008;33(9):606–9.PubMedGoogle Scholar
  56. 56.
    Bodei L, Lam M, Chiesa C, et al. EANM procedure guideline for treatment of refractory metastatic bone pain. Eur J Nucl Med Mol Imaging. 2008;35(10):934–1940.Google Scholar
  57. 57.
    Olivier P, Colarinha P, Fettich J, et al. Guidelines for radioiodinated MIBG scintigraphy in children. Eur J Nucl Med Mol Imaging. 2003;30(5):B45–50.PubMedGoogle Scholar
  58. 58.
    Kowalsky RJ, Falen SW. Radiopharmaceuticals in nuclear pharmacy and nuclear medicine. 2nd ed. Washington DC: American Pharmacists Association; 2004.Google Scholar
  59. 59.
    Lonergan GJ, Schwab CM, Suarez ES, et al. Neuroblastoma, ganglioneuroblastoma, and ganglioneuroma: radiologic-pathologic correlation. Radiographics. 2002;22(4):911–34.PubMedGoogle Scholar
  60. 60.
    Bombardieri E, Giammarile F, Aktolun C, et al. 131I/123I-Metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2010;37:2436–46.PubMedGoogle Scholar
  61. 61.
    Boubaker A, Bischof Delaloye A. Nuclear medicine procedures and neuroblastoma in childhood. Their value in the diagnosis, staging and assessment of response to therapy. Q J Nucl Med. 2003;47(1):31–40.PubMedGoogle Scholar
  62. 62.
    Alexander N, Vali R, Ahmadzadehfar H, Shammas A, Baruchel S. Review: the role of radiolabeled DOTA-conjugated peptides for imaging and treatment of childhood neuroblastoma. Curr Radiopharm. 2018;11(1):14–21.PubMedGoogle Scholar
  63. 63.
    Zhang L, Vines D, Scollard D, et al. Correlation of somatostatin receptor-2 expression with gallium-68-DOTA-TATE uptake in neuroblastoma xenograft models. Contrast Media Mol Imaging. 2017;2017:9481276.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Barthlen W, Mohnike W, Mohnike K. Techniques in pediatric surgery: congenital hyperinsulinism. Horm Res Paediatr. 2010;74:438–43.PubMedGoogle Scholar
  65. 65.
    Arnoux JB, de Lonlay P, et al. Congenital hyperinsulinism. Early Hum Dev. 2010;86:287–94.PubMedGoogle Scholar
  66. 66.
    McAndrew HF, Smith V, et al. Surgical complications of pancreatectomy for persistent hyperinsulinaemic hypoglycaemia of infancy. J Pediatr Surg. 2003;38:13–6. discussion 13–16.PubMedGoogle Scholar
  67. 67.
    McCarville M. PET-CT imaging in pediatric oncology. Cancer Imaging. 2009;9(1):35–43.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Krohmer S, Sorge I, Krausse A, Kluge R, Bierbach U, Marwede D, et al. Whole-body MRI for primary evaluation of malignant disease in children. Eur J Radiol. 2010;74(1):256–261.6.PubMedGoogle Scholar
  69. 69.
    Volker T, Denecke T, Steffen I, Misch D, Schonberger S, Plotkin M, et al. Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol. 2007;25(34):5435–41.PubMedGoogle Scholar
  70. 70.
    Bisdas S, Ritz R, Bender B, Braun C, Pfannenberg C, Reimold M, et al. Metabolic mapping of gliomas using hybrid MR-PET imaging: feasibility of the method and spatial distribution of metabolic changes. Invest Radiol. 2013;48(5):295–301.PubMedGoogle Scholar
  71. 71.
    Warbey VS, Ferner RE, Dunn JT, Calonje E, O’Doherty MJ. [18F] FDG PET/CT in the diagnosis of malignant peripheral nerve sheath tumours in neurofibromatosis type-1. Eur J Nucl Med Mol Imaging. 2009;36(5):751–7.PubMedGoogle Scholar
  72. 72.
    Gatidis S, Schmidt H, Gucke B, Bezrukov I, Seitz G, Ebinger M, et al. Comprehensive oncologic imaging in infants and preschool children with substantially reduced radiation exposure using combined simultaneous 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging: a direct comparison to 18F fluorodeoxyglucose positron emission tomography/computed tomography. Invest Radiol. 2016;51(1):7–14.PubMedGoogle Scholar
  73. 73.
    Schafer JF, Gatidis S, Schmidt H, Guckel B, Bezrukov I, Pfannenberg CA, et al. Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology. 2014;273(1):220–31.PubMedGoogle Scholar
  74. 74.
    Nihayah S, Shammas A, Vali R, Parra D, Alexander S, Amaral J, Connolly B. Correlation of PET/CT and image-guided biopsies of pediatric malignancies. AJR Am J Roentgenol. 2017;208(3):656–62.PubMedGoogle Scholar
  75. 75.
    Blokhuis GJ, Bleeker-Rovers CP, Diender MG, Oyen WJ, Draaisma JM, de Geus-Oei LF. Diagnostic value of FDG-PET/(CT) in children with fever of unknown origin and unexplained fever during immune suppression. Eur J Nucl Med Mol Imaging. 2014;41(10):1916–23.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Ferdinand B, Gupta P, Kramer EL. Spectrum of thymic uptake at 18F-FDG PET. Radiographics. 2004;24(6):1611–6.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Sasaki M, Kuwabara Y, Ichiya Y, et al. Differential diagnosis of thymic tumors using a combination of 11C-methionine PET and FDG PET. J Nucl Med. 1999;40(10):1595–601.PubMedGoogle Scholar
  78. 78.
    Bemben MG, Massey BH, Bemben DA, et al. Age-related variability in body composition methods for assessment of percent fat and fat-free mass in men aged 20–74 years. Age Ageing. 1998;27(2):147–53.PubMedGoogle Scholar
  79. 79.
    Delbeke D, Coleman R, Milton J, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. In: SNM guideline. Reston, VA: SNM; 2006.Google Scholar
  80. 80.
    Nakagawa TA, Ashwal S, Mathur M, et al. Guidelines for the determination of brain death in infants and children: an update of the 1987 Task Force recommendations. Crit Care Med. 2011;39(9):2139–55.PubMedGoogle Scholar
  81. 81.
    Banasiak KJ, Lister G. Brain death in children. Curr Opin Pediatr. 2003;15(3):288–93.PubMedGoogle Scholar
  82. 82.
    Friedman NC, Burt RW. Cerebral perfusion imaging. In: Henkin RE, Bova D, Dillehay GL, et al., editors. Nuclear medicine. 2nd ed. Philadelphia, PA: Mosby-Elsevier; 2006.Google Scholar
  83. 83.
    Donohoe KJ, Agrawal G, Frey KA, et al. SNM practice guideline for brain death scintigraphy 2.0. J Nucl Med Technol. 2012;40(3):198–203.PubMedGoogle Scholar
  84. 84.
    Okuyaz C, Gücüyener K, Karabacak NI, et al. Tc-99m-HMPAO SPECT in the diagnosis of brain death in children. Pediatr Int. 2004;46(6):711–4.PubMedGoogle Scholar
  85. 85.
    Sinha P, Conrad GR. Scintigraphic confirmation of brain death. Semin Nucl Med. 2012;42(1):27–32.PubMedGoogle Scholar
  86. 86.
    Coker SB, Dillehay GL. Radionuclide cerebral imaging for confirmation of brain death in children: the significance of dural sinus activity. Pediatr Neurol. 1986;2(1):43–6.PubMedGoogle Scholar
  87. 87.
    Wieler H, Marohl K, Kaiser KP, et al. Tc-99m HMPAO cerebral scintigraphy. A reliable, noninvasive method for determination of brain death. Clin Nucl Med. 1993;18:104–9.PubMedGoogle Scholar
  88. 88.
    Facco E, Zucchetta P, Munari M, Baratto F, et al. 99mTc-HMPAO SPECT in the diagnosis of brain death. Intensive Care Med. 1998;24(9):911–7.PubMedGoogle Scholar
  89. 89.
    Ashwal S, Schneider S. Brain death in the newborn. Pediatrics. 1989;84(3):429–37.PubMedGoogle Scholar
  90. 90.
    Rastogi MV, LaFranchi SH. Congenital hypothyroidism. Orphanet J Rare Dis. 2010;5:17. Scholar
  91. 91.
    Léger J, Olivieri A, Donaldson M, Torresani T, Krude H, van Vliet G, et al. European Society for Paediatric Endocrinology consensus guidelines on screening, diagnosis, and management of congenital hypothyroidism. J Clin Endocrinol Metab. 2014;99:363 84.PubMedGoogle Scholar
  92. 92.
    Wassner AJ, Brown RS. Congenital hypothyroidism: recent advances. Curr Opin Endocrinol Diabetes Obes. 2015;22(5):407–12.PubMedGoogle Scholar
  93. 93.
    Treves ST, Gelfand MJ, Fahey FH, Parisi MT. 2016 Update of the North American Consensus Guidelines for pediatric administered radiopharmaceutical activities. J Nucl Med. 2016;57(12):15N–8N.PubMedGoogle Scholar
  94. 94.
    Keller-Petrot I, Leger J, Sergent-Alaoui A, de Labriolle-Vaylet C. Congenital hypothyroidism: role of nuclear medicine. Semin Nucl Med. 2017;47(2):135–42.PubMedGoogle Scholar
  95. 95.
    Volkan-Salancı B, Özgen Kıratlı P. Nuclear medicine in thyroid diseases in pediatric and adolescent patients. Mol Imaging Radionucl Ther. 2015;24(2):47–59. Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Nuclear Medicine, The Hospital for Sick ChildrenUniversity of TorontoTorontoCanada

Personalised recommendations